login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n with more odd parts than even parts.
12

%I #33 Aug 19 2021 20:06:44

%S 1,1,2,3,4,7,9,14,18,27,35,49,64,86,113,148,192,247,319,404,517,649,

%T 822,1024,1285,1590,1979,2436,3007,3682,4515,5501,6703,8131,9851,

%U 11899,14344,17252,20703,24804,29640,35377,42115,50085,59415,70420,83261,98365,115947,136557

%N Number of partitions of n with more odd parts than even parts.

%H Alois P. Heinz, <a href="/A108950/b108950.txt">Table of n, a(n) for n = 1..1000</a>

%H B. Kim, E. Kim, and J. Lovejoy, <a href="https://doi.org/10.1016/j.ejc.2020.103159">Parity bias in partitions</a>, European J. Combin., 89 (2020), 103159, 19 pp.

%F G.f.: Sum_{k>=0} x^k*(1-x^(2*k))/Product_{i=1..k} (1-x^(2*i))^2. - _Vladeta Jovovic_, Aug 19 2007

%F a(n) = A130780(n) - A045931(n) = A171967(n) - A108949(n). - _Reinhard Zumkeller_, Jan 21 2010

%F a(n) = Sum_{k=1..n} A240009(n,k). - _Alois P. Heinz_, Mar 30 2014

%F G.f.: (Product_{k>=1} 1/(1-x^(2*k-1)))*Sum_{n>=1} q^(2*n^2-n)*(1-q^(2*n))/Product_{k=1..n} (1-q^(2*k))^2. - _Jeremy Lovejoy_, Jan 12 2021

%e a(4) = 3: {[3,1], [2,1,1], [1,1,1,1]}; a(5) = 4: {[5], [3,1,1], [2,1,1,1], [1,1,1,1,1]}.

%p with(combinat,partition):oddbigrevn:=proc(n::nonnegint) local evencount,oddcount,bigcount,parts,i,j; printlevel:=-1;bigcount:=0; partitions:=partition(n);for i from 1 to nops(partitions) do evencount:=0; oddcount:=0;for j from 1 to nops(partitions[i]) do if (op(j,partitions[i]) mod 2 <>0) then oddcount:=oddcount+1 fi; if (op(j,partitions[i]) mod 2 =0) then evencount:=evencount+1 fi od; if (evencount<oddcount) then bigcount:=bigcount+1 fi od; printlevel:=1; return(bigcount) end proc; seq(oddbigrevn(i),i=1..42);

%p # second Maple program:

%p b:= proc(n, i, t) option remember; `if`(n=0,

%p `if`(t>0, 1, 0), `if`(i<1, 0, b(n, i-1, t)+

%p `if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1)))))

%p end:

%p a:= n-> b(n$2, 0):

%p seq(a(n), n=1..80); # _Alois P. Heinz_, Mar 30 2014

%t p[n_] := p[n] = Select[IntegerPartitions[n], Count[#, _?OddQ] > Count[#, _?EvenQ] &]; t = Table[p[n], {n, 0, 15}] (* partitions of n with # odd parts > # even parts *)

%t TableForm[t] (* partitions, vertical format *)

%t Table[Length[p[n]], {n, 1, 30}] (* A108950 *)

%t (* _Peter J. C. Moses_, Mar 10 2014 *)

%t b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t>0, 1, 0], If[i<1, 0, b[n, i-1, t] + If[i>n, 0, b[n-i, i, t + (2*Mod[i, 2]-1)]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 1, 80}] (* _Jean-François Alcover_, Nov 16 2015, after _Alois P. Heinz_ *)

%Y Cf. A045931 for #even parts = #odd parts, A108949 for #even parts > #odd parts.

%Y Cf. A171966, A171967. - _Reinhard Zumkeller_, Jan 21 2010

%K nonn

%O 1,3

%A _Len Smiley_, Jul 21 2005

%E More terms from _Joerg Arndt_, Oct 04 2012