login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171967
Number of partitions of n with distinct numbers of odd and even parts.
8
0, 1, 2, 2, 5, 5, 10, 12, 20, 25, 37, 49, 68, 90, 119, 158, 206, 269, 344, 446, 565, 722, 908, 1148, 1435, 1795, 2229, 2765, 3416, 4204, 5164, 6315, 7717, 9380, 11406, 13793, 16692, 20093, 24203, 29012, 34799, 41552, 49636, 59059, 70279, 83341, 98822
OFFSET
0,3
COMMENTS
a(n) = A000041(n) - A045931(n) = A108949(n) + A108950(n).
a(n) = Sum_{k<>0} A240009(n,k). - Alois P. Heinz, Mar 30 2014
LINKS
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0,
`if`(t<>0, 1, 0), `if`(i<1, 0, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..80); # Alois P. Heinz, Mar 30 2014
MATHEMATICA
$RecursionLimit = 1000; b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t != 0, 1, 0], If[i < 1, 0, b[n, i-1, t] + If[i>n, 0, b[n-i, i, t+(2*Mod[i, 2]-1)]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jun 30 2015, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A306320 A347449 A325347 * A079964 A184321 A103891
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jan 21 2010
STATUS
approved