Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Oct 27 2018 19:42:04
%S 0,1,2,2,5,5,10,12,20,25,37,49,68,90,119,158,206,269,344,446,565,722,
%T 908,1148,1435,1795,2229,2765,3416,4204,5164,6315,7717,9380,11406,
%U 13793,16692,20093,24203,29012,34799,41552,49636,59059,70279,83341,98822
%N Number of partitions of n with distinct numbers of odd and even parts.
%C a(n) = A000041(n) - A045931(n) = A108949(n) + A108950(n).
%C a(n) = Sum_{k<>0} A240009(n,k). - _Alois P. Heinz_, Mar 30 2014
%H Alois P. Heinz, <a href="/A171967/b171967.txt">Table of n, a(n) for n = 0..3500</a>
%p b:= proc(n, i, t) option remember; `if`(n=0,
%p `if`(t<>0, 1, 0), `if`(i<1, 0, b(n, i-1, t)+
%p `if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1)))))
%p end:
%p a:= n-> b(n$2, 0):
%p seq(a(n), n=0..80); # _Alois P. Heinz_, Mar 30 2014
%t $RecursionLimit = 1000; b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t != 0, 1, 0], If[i < 1, 0, b[n, i-1, t] + If[i>n, 0, b[n-i, i, t+(2*Mod[i, 2]-1)]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* _Jean-François Alcover_, Jun 30 2015, after _Alois P. Heinz_ *)
%Y Cf. A130780, A171966.
%K nonn
%O 0,3
%A _Reinhard Zumkeller_, Jan 21 2010