login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329605
Number of divisors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).
16
1, 2, 4, 3, 8, 6, 16, 4, 9, 12, 32, 8, 64, 24, 18, 5, 128, 12, 256, 16, 36, 48, 512, 10, 27, 96, 16, 32, 1024, 24, 2048, 6, 72, 192, 54, 15, 4096, 384, 144, 20, 8192, 48, 16384, 64, 32, 768, 32768, 12, 81, 36, 288, 128, 65536, 20, 108, 40, 576, 1536, 131072, 30, 262144, 3072, 64, 7, 216, 96, 524288, 256, 1152, 72, 1048576, 18, 2097152, 6144, 48
OFFSET
1,2
FORMULA
a(n) = A000005(A108951(n)).
a(n) >= A329382(n) >= A329617(n) >= A329378(n).
A020639(a(n)) = A329614(n).
From Antti Karttunen, Jan 14 2020: (Start)
a(A052126(n)) = A329382(n).
a(A002110(n)) = A000142(1+n), for all n >= 0.
a(n) > A056239(n).
a(A329902(n)) = A002183(n).
A000265(a(n)) = A331286(n).
gcd(n,a(n)) = A331283(n).
If n = p(k1)^e(k1) * p(k2)^e(k2) * p(k3)^e(k3) * ... * p(kx)^e(kx), with p(n) = A000040(n) and k1 > k2 > ... > kx, then a(n) = (1+e(k1))^(k1-k2) * (1+e(k1)+e(k2))^(k2-k3) * ... * (1+e(k1)+e(k2)+...+e(kx))^kx.
A000035(a(n)) = A000035(A000005(n)) = A010052(n).
(End)
MATHEMATICA
Block[{a}, a[n_] := a[n] = Module[{f = FactorInteger[n], p, e}, If[Length[f] > 1, Times @@ a /@ Power @@@ f, {{p, e}} = f; Times @@ (Prime[Range[PrimePi[p]]]^e)]]; a[1] = 1; Array[DivisorSigma[0, a@ #] &, 75]] (* Michael De Vlieger, Jan 24 2020, after Jean-François Alcover at A108951 *)
PROG
(PARI)
A034386(n) = prod(i=1, primepi(n), prime(i));
A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951
A329605(n) = numdiv(A108951(n));
(PARI) A329605(n) = if(1==n, 1, my(f=factor(n), e=1, m=1); forstep(i=#f~, 1, -1, e += f[i, 2]; m *= e^(primepi(f[i, 1])-if(1==i, 0, primepi(f[i-1, 1])))); (m)); \\ Antti Karttunen, Jan 14 2020
(PARI) A329605(n) = if(1==n, 1, my(f=factor(n), e=0, d); forstep(i=#f~, 1, -1, e += f[i, 2]; d = (primepi(f[i, 1])-if(1==i, 0, primepi(f[i-1, 1]))); f[i, 1] = (e+1); f[i, 2] = d); factorback(f)); \\ Antti Karttunen, Jan 14 2020
CROSSREFS
Cf. A329606 (rgs-transform), A329608, A331284 (ordinal transform).
Cf. A331285 (the position where for the first time some term has occurred n times in this sequence).
Sequence in context: A243346 A295029 A338918 * A243073 A243345 A297499
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 18 2019
STATUS
approved