login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331284
Number of values of k, 1 <= k <= n, with A329605(k) = A329605(n), where A329605 is the number of divisors of primorial inflation of n (A108951).
3
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 3
OFFSET
1,8
COMMENTS
Ordinal transform of A329605, or equally, of A329606.
FORMULA
a(A331285(n)) = n for all n.
MATHEMATICA
c[n_] := c[n] = If[n == 1, 1, Module[{f = FactorInteger[n], p, e}, If[Length[f] > 1, Times @@ c /@ Power @@@ f, {{p, e}} = f; Times @@ (Prime[Range[PrimePi[p]]]^e)]]];
A329605[n_] := DivisorSigma[0, c[n]];
Module[{b}, b[_] = 0;
a[n_] := With[{t = A329605[n]}, b[t] = b[t] + 1]];
Array[a, 105] (* Jean-François Alcover, Jan 12 2022 *)
PROG
(PARI)
up_to = 65537;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
A329605(n) = if(1==n, 1, my(f=factor(n), e=1, m=1); forstep(i=#f~, 1, -1, e += f[i, 2]; m *= e^(primepi(f[i, 1])-if(1==i, 0, primepi(f[i-1, 1])))); (m));
v331284 = ordinal_transform(vector(up_to, n, A329605(n)));
A331284(n) = v331284[n];
CROSSREFS
Cf. A000005, A108951, A329605, A329606, A331285 (positions of the first occurrences of each n, also positions of records).
Cf. also A067004.
Sequence in context: A210960 A339095 A193509 * A331591 A003649 A353741
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 14 2020
STATUS
approved