

A329606


Lexicographically earliest infinite sequence such that a(i) = a(j) => A329605(i) = A329605(j) for all i, j.


5



1, 2, 3, 4, 5, 6, 7, 3, 8, 9, 10, 5, 11, 12, 13, 14, 15, 9, 16, 7, 17, 18, 19, 20, 21, 22, 7, 10, 23, 12, 24, 6, 25, 26, 27, 28, 29, 30, 31, 32, 33, 18, 34, 11, 10, 35, 36, 9, 37, 17, 38, 15, 39, 32, 40, 41, 42, 43, 44, 45, 46, 47, 11, 48, 49, 22, 50, 16, 51, 25, 52, 13, 53, 54, 18, 19, 55, 26, 56, 12, 57, 58, 59, 60, 61, 62, 63, 64, 65, 41, 66, 23, 67, 68, 69, 70, 71, 40, 15, 72, 73, 30, 74, 75, 22
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Restricted growth sequence transform of A329605(n) = A000005(A108951(n)).
For all i, j:
a(i) = a(j) => A329614(i) = A329614(j).


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..100000
Index entries for sequences computed from indices in prime factorization
Index entries for sequences related to primorial numbers


PROG

(PARI)
up_to = 100000;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A034386(n) = prod(i=1, primepi(n), prime(i));
A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951
A329605(n) = numdiv(A108951(n));
v329606 = rgs_transform(vector(up_to, n, A329605(n)));
A329606(n) = v329606[n];


CROSSREFS

Cf. A000005, A108951, A329605, A329608, A329614.
Sequence in context: A066323 A245347 A278059 * A115871 A138221 A038388
Adjacent sequences: A329603 A329604 A329605 * A329607 A329608 A329609


KEYWORD

nonn


AUTHOR

Antti Karttunen, Nov 18 2019


STATUS

approved



