OFFSET
1,2
COMMENTS
a(n) = r(n,m) with m such that r(n,m)=r(n,m+1), where r(n,k) = A097246(r(n,k-1)), r(n,0)=n. (The original definition.)
A097248(n) = r(n,a(n)).
From Antti Karttunen, Nov 15 2016: (Start)
The above remark could be interpreted to mean that A097249(n) <= a(n).
All terms are squarefree, and the squarefree numbers are the fixed points.
These are also fixed points eventually reached when iterating A277886.
(End)
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
FORMULA
From Antti Karttunen, Nov 15 2016: (Start)
A007913(a(n)) = a(n).
(End)
From Peter Munn, Feb 06 2020: (Start)
a(1) = 1; a(p) = p, for prime p; a(m*k) = A331590(a(m), a(k)).
a(A225546(n)) = a(n).
(End)
From Antti Karttunen, Feb 22-25 & Mar 01 2020: (Start)
(End)
MATHEMATICA
Table[FixedPoint[Times @@ Map[#1^#2 & @@ # &, Partition[#, 2, 2] &@ Flatten[FactorInteger[#] /. {p_, e_} /; e >= 2 :> {If[OddQ@ e, {p, 1}, {1, 1}], {NextPrime@ p, Floor[e/2]}}]] &, n], {n, 75}] (* Michael De Vlieger, Mar 18 2017 *)
PROG
(PARI)
A097246(n) = { my(f=factor(n)); prod(i=1, #f~, (nextprime(f[i, 1]+1)^(f[i, 2]\2))*((f[i, 1])^(f[i, 2]%2))); };
\\ Antti Karttunen, Mar 18 2017
(Scheme) ;; with memoization-macro definec
;; Two implementations:
;; Antti Karttunen, Nov 15 2016
(Python)
from sympy import factorint, nextprime
from operator import mul
def a097246(n):
f=factorint(n)
return 1 if n==1 else reduce(mul, [(nextprime(i)**int(f[i]/2))*(i**(f[i]%2)) for i in f])
def a(n):
k=a097246(n)
while k!=n:
n=k
k=a097246(k)
return k # Indranil Ghosh, May 15 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 03 2004
EXTENSIONS
Name changed and the original definition moved to the Comments section by Antti Karttunen, Nov 15 2016
STATUS
approved