login
A331751
Numbers k such that A048675(sigma(k)) is equal to A048675(2*k).
8
2, 6, 27, 28, 84, 270, 496, 1053, 1120, 1488, 1625, 1638, 3360, 3780, 4875, 8128, 10530, 24384, 66960, 147420, 167400, 406224, 611226, 775000, 872960, 943250, 1097280, 1245699, 1255338, 1303533, 1464320, 1686400, 1740024, 1922375, 1952500, 2011625, 2193408, 2325000, 2611440, 2618880, 2829750, 2941029, 4392960
OFFSET
1,1
COMMENTS
Numbers k such that A097248(sigma(k)) is equal to A097248(2*k).
Numbers k such that A331750(k) is equal to 1+A048675(k), which in turn is equal to A048675(A225546(2*k)) = A048675(2*A225546(k)).
Among the first 60 terms, 15 are odd: 27, 1053, 1625, 4875, 1245699, 1303533, 1922375, 2011625, 2941029, 5767125, 6034875, 12733875, 17137575, 26316675, 29362905, and only 1053 = 3^4 * 13 is in A228058.
Note that the condition A090880(sigma(k)) == A090880(2*k) appears to be much more constrained.
EXAMPLE
For n = 1053 = 3^4 * 13^1, A331750(1053) = A331750(81) + A331750(13) = 32+9 = 41, while A048675(2*1053) = A048675(2)+A048675(81)+A048675(13) = 1+8+32 = 41 also, thus 1053 is included in this sequence.
For n = 3360 = 2^5 * 3^1 * 5^1 * 7^1, A331750(3360) = A331750(32)+A331750(3)+A331750(5)+A331750(7) = 12+2+3+3 = 20, while A048675(2*3360) = A048675(2)+A048675(32)+A048675(3)+A048675(5)+A048675(7) = 1+5+2+4+8 = 20 also, thus 3360 is included in this sequence.
PROG
(PARI)
A097246(n) = { my(f=factor(n)); prod(i=1, #f~, (nextprime(f[i, 1]+1)^(f[i, 2]\2))*((f[i, 1])^(f[i, 2]%2))); };
A097248(n) = { my(k=A097246(n)); while(k<>n, n = k; k = A097246(k)); k; };
isA331751(n) = (A097248(2*n)==A097248(sigma(n)));
CROSSREFS
Cf. A000396 (a subsequence).
Sequence in context: A162438 A137071 A255016 * A034565 A053687 A027213
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 05 2020
STATUS
approved