login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097246
Replace factors of n that are squares of a prime with the prime succeeding this prime.
13
1, 2, 3, 3, 5, 6, 7, 6, 5, 10, 11, 9, 13, 14, 15, 9, 17, 10, 19, 15, 21, 22, 23, 18, 7, 26, 15, 21, 29, 30, 31, 18, 33, 34, 35, 15, 37, 38, 39, 30, 41, 42, 43, 33, 25, 46, 47, 27, 11, 14, 51, 39, 53, 30, 55, 42, 57, 58, 59, 45, 61, 62, 35, 27, 65, 66, 67, 51, 69, 70, 71, 30, 73
OFFSET
1,2
LINKS
FORMULA
Multiplicative with p^e -> NextPrime(p)^floor(e/2) * p^(e mod 2), where p prime and NextPrime(p)=A000040(A049084(p)+1).
a(n) <= n; a(n) = n iff n is squarefree: a(A005117(n)) = A005117(n);
a(m*n) <= a(m)*a(n); a(m*n) = a(m)*a(n) iff m and n are coprime;
a(A000040(k)^n) = A000040(k+1)^floor(n/2)*A000040(k)^(n mod 2); a(2^n) = 3^floor(n/2) * (1 + n mod 2);
a(A000040(k)*A002110(n)/A002110(k-1)) = A000040(k+1)*A002110(n)/A002110(k) for k <= n, see also A097250.
From Antti Karttunen, Nov 15 2016: (Start)
a(1) = 1; for n > 1, a(n) = 2^A000035(A007814(n)) * 3^A004526(A007814(n)) * A003961(a(A064989(n))).
a(n) = A003961(A000188(n)) * A007913(n).
A048675(a(n)) = A048675(n).
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (p^4-p^2)/(p^4-nextprime(p)) = 0.4059779303..., where nextprime is A151800. - Amiram Eldar, Nov 29 2022
MATHEMATICA
Table[Times @@ Map[#1^#2 & @@ # &, Partition[#, 2, 2] &@ Flatten[ FactorInteger[n] /. {p_, e_} /; e >= 2 :> {If[OddQ@ e, {p, 1}, {1, 1}], {NextPrime@ p, Floor[e/2]}}]], {n, 73}] (* Michael De Vlieger, Mar 18 2017 *)
PROG
(PARI) A097246(n) = { my(f=factor(n)); prod(i=1, #f~, (nextprime(f[i, 1]+1)^(f[i, 2]\2))*((f[i, 1])^(f[i, 2]%2))); }; \\ Antti Karttunen, Mar 18 2017
(Scheme)
(definec (A097246 n) (if (= 1 n) 1 (* (A000244 (A004526 (A007814 n))) (A000079 (A000035 (A007814 n))) (A003961 (A097246 (A064989 n))))))
(define (A097246 n) (* (A003961 (A000188 n)) (A007913 n)))
;; Antti Karttunen, Nov 15 2016
(Python)
from sympy import factorint, nextprime
from operator import mul
def a(n):
f=factorint(n)
return 1 if n==1 else reduce(mul, [(nextprime(i)**int(f[i]/2))*(i**(f[i]%2)) for i in f]) # Indranil Ghosh, May 15 2017
CROSSREFS
Cf. A097247, A097248 (fixed points of iteration), A097249 (number of iterations needed to reach them for each n), A277886, A277899.
Sequence in context: A343247 A097248 A097247 * A277886 A359588 A337868
KEYWORD
nonn,mult
AUTHOR
Reinhard Zumkeller, Aug 03 2004
STATUS
approved