login
A277899
a(n) = A097249(A260443(n)).
5
0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 2, 0, 1, 0, 0, 0, 3, 2, 3, 1, 3, 2, 2, 0, 2, 1, 2, 0, 1, 0, 0, 0, 4, 3, 4, 2, 4, 3, 3, 1, 3, 3, 3, 2, 3, 2, 2, 0, 3, 2, 3, 1, 3, 2, 2, 0, 2, 1, 2, 0, 1, 0, 0, 0, 5, 4, 5, 3, 5, 4, 4, 2, 4, 4, 4, 3, 4, 3, 4, 1, 4, 3, 4, 3, 4, 3, 4, 2, 4, 3, 4, 2, 3, 2, 2, 0, 4, 3, 4, 2, 4, 3, 3, 1, 3, 3, 3, 2, 3, 2, 3, 0, 3, 2, 3, 1, 3, 2, 2, 0
OFFSET
0,10
COMMENTS
a(n) = number of times we must iterate A097246, starting at A260443(n), before the result is squarefree.
LINKS
FORMULA
a(n) = A097249(A260443(n)).
PROG
(Scheme)
(define (A277899 n) (A097249_for_coeff_list (A260443as_coeff_list n)))
(define (A097249_for_coeff_list nums) (let loop ((nums nums) (s 0)) (if (<= (reduce max 0 nums) 1) s (loop (A097246_for_coeff_list nums) (+ 1 s)))))
(define (A097246_for_coeff_list nums) (add_two_lists (map A000035 nums) (cons 0 (map A004526 nums))))
;; For the other required functions, see A260443.
CROSSREFS
Cf. A023758 (positions of zeros).
Sequence in context: A082995 A079549 A143374 * A283760 A070088 A131851
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 15 2016
STATUS
approved