login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131851
Real part of the function z(n)=Sum(d(k)*i^k: d as in n=Sum(d(k)*2^k), i=sqrt(-1)).
12
0, 1, 0, 1, -1, 0, -1, 0, 0, 1, 0, 1, -1, 0, -1, 0, 1, 2, 1, 2, 0, 1, 0, 1, 1, 2, 1, 2, 0, 1, 0, 1, 0, 1, 0, 1, -1, 0, -1, 0, 0, 1, 0, 1, -1, 0, -1, 0, 1, 2, 1, 2, 0, 1, 0, 1, 1, 2, 1, 2, 0, 1, 0, 1, -1, 0, -1, 0, -2, -1, -2, -1, -1, 0, -1, 0, -2, -1, -2, -1, 0, 1, 0, 1, -1, 0, -1, 0, 0, 1, 0, 1, -1, 0, -1, 0, -1, 0, -1, 0, -2, -1, -2, -1, -1, 0, -1, 0, -2, -1, -2
OFFSET
0,18
COMMENTS
A131852(n) = Im(z(n));
z(A000079(n))=(A056594(n),A056594(n+3)); a(A000079(n))=A056594(n);
a(A131854(n))=0; a(A131861(n))>0; a(A131859(n))=1; a(A131863(n))<0;
z(A131853(n))=(0,0); z(A131856(n))=(0,1); z(A131858(n))=(1,0); z(A131860(n))=(1,1);
for n>0: a(A131865(n))=n and ABS(a(m))<n for m < A131865(n).
LINKS
FORMULA
z(n) = if n=0 then (0, 0) else z(floor(n/2))*(0, 1) + (n mod 2, 0), complex multiplication.
MATHEMATICA
z[0] = 0; z[n_] := z[n] = z[Floor[n/2]]*I + Mod[n, 2]; Table[z[n] // Re, {n, 0, 110}] (* Jean-François Alcover, Jul 03 2013 *)
CROSSREFS
Cf. A007088.
Sequence in context: A277899 A283760 A070088 * A345021 A104886 A215604
KEYWORD
sign
AUTHOR
Reinhard Zumkeller, Jul 22 2007
STATUS
approved