login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097249
a(n) is the number of times we must iterate A097246, starting at n, before the result is squarefree.
7
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 1, 1, 0, 0, 0, 1, 0
OFFSET
1,12
COMMENTS
a(n) = Min{k: r(n,k)=r(n,k+1)}, where r(n,k)=A097246(r(n,k-1)), r(n,0)=n;
a(A005117(n))=0; a(A097250(n))=n and a(m)<n for m < A097250(n).
LINKS
FORMULA
If A008966(n) = 1 [when n is in A005117], a(n) = 0, otherwise a(n) = 1 + a(A097246(n)). - Antti Karttunen, Jul 29 2018
MATHEMATICA
f[n_] := Product[{p, e} = pe; NextPrime[p]^Quotient[e, 2] p^Mod[e, 2], {pe, FactorInteger[n]}];
a[n_] := (NestWhileList[f, n, !SquareFreeQ[#]&] // Length) - 1;
Array[a, 105] (* Jean-François Alcover, Nov 18 2021 *)
PROG
(PARI)
A097246(n) = { my(f=factor(n)); prod(i=1, #f~, (nextprime(f[i, 1]+1)^(f[i, 2]\2))*((f[i, 1])^(f[i, 2]%2))); };
A097249(n) = if(issquarefree(n), 0, 1+A097249(A097246(n))); \\ Antti Karttunen, Jul 29 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 03 2004
EXTENSIONS
Edited by Sam Alexander, Jan 05 2005
STATUS
approved