login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053600
a(1) = 2; for n>=1, a(n+1) is the smallest palindromic prime with a(n) as a central substring.
13
2, 727, 37273, 333727333, 93337273339, 309333727333903, 1830933372733390381, 92183093337273339038129, 3921830933372733390381293, 1333921830933372733390381293331, 18133392183093337273339038129333181
OFFSET
1,1
REFERENCES
G. L. Honaker, Jr. and Chris K. Caldwell, Palindromic Prime Pyramids, J. Recreational Mathematics, Vol. 30(3) 169-176, 1999-2000.
LINKS
G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 18133...33181 (35-digits)
G. L. Honaker, Jr. & C. K. Caldwell, Palindromic Prime Pyramids
G. L. Honaker, Jr. & C. K. Caldwell, Supplement to "Palindromic Prime Pyramids"
Ivars Peterson, Primes, Palindromes, and Pyramids, Science News.
Inder J. Taneja, Palindromic Prime Embedded Trees, RGMIA Res. Rep. Coll. 20 (2017), Art. 124.
Inder J. Taneja, Same Digits Embedded Palprimes, RGMIA Research Report Collection (2018) Vol. 21, Article 75, 1-47.
EXAMPLE
As a triangle:
.........2
........727
.......37273
.....333727333
....93337273339
..309333727333903
1830933372733390381
MATHEMATICA
d[n_] := IntegerDigits[n]; t = {x = 2}; Do[i = 1; While[! PrimeQ[y = FromDigits[Flatten[{z = d[i], d[x], Reverse[z]}]]], i++]; AppendTo[t, x = y], {n, 10}]; t (* Jayanta Basu, Jun 24 2013 *)
PROG
(Python)
from gmpy2 import digits, mpz, is_prime
A053600_list, p = [2], 2
for _ in range(30):
m, ps = 1, digits(p)
s = mpz('1'+ps+'1')
while not is_prime(s):
m += 1
ms = digits(m)
s = mpz(ms+ps+ms[::-1])
p = s
A053600_list.append(int(p)) # Chai Wah Wu, Apr 09 2015
KEYWORD
base,nonn
AUTHOR
G. L. Honaker, Jr., Jan 20 2000
STATUS
approved