Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Nov 06 2024 15:26:46
%S 2,727,37273,333727333,93337273339,309333727333903,
%T 1830933372733390381,92183093337273339038129,
%U 3921830933372733390381293,1333921830933372733390381293331,18133392183093337273339038129333181
%N a(1) = 2; for n>=1, a(n+1) is the smallest palindromic prime with a(n) as a central substring.
%D G. L. Honaker, Jr. and Chris K. Caldwell, Palindromic Prime Pyramids, J. Recreational Mathematics, Vol. 30(3) 169-176, 1999-2000.
%H Clark Kimberling, <a href="/A053600/b053600.txt">Table of n, a(n) for n = 1..200</a>
%H P. De Geest, <a href="https://www.worldofnumbers.com/palprim3.htm">Palindromic Prime Pyramid Puzzle by G.L.Honaker,Jr</a>
%H G. L. Honaker, Jr. and Chris Caldwell, <a href="https://t5k.org/curios/cpage/1143.html">Prime Curios! 18133...33181 (35-digits)</a>
%H G. L. Honaker, Jr. & C. K. Caldwell, <a href="http://www.utm.edu/staff/caldwell/preprints/JRM_prime_pyramids.pdf">Palindromic Prime Pyramids</a>
%H G. L. Honaker, Jr. & C. K. Caldwell, <a href="http://www.utm.edu/staff/caldwell/supplements">Supplement to "Palindromic Prime Pyramids"</a>
%H Ivars Peterson, <a href="https://www.sciencenews.org/article/primes-palindromes-and-pyramids">Primes, Palindromes, and Pyramids</a>, Science News.
%H Inder J. Taneja, <a href="https://www.researchgate.net/profile/Inder_Taneja/publication/319151146_Palindromic_Prime_Embedded_Trees/links/5994fddb458515c0ce653c73/Palindromic-Prime-Embedded-Trees.pdf">Palindromic Prime Embedded Trees</a>, RGMIA Res. Rep. Coll. 20 (2017), Art. 124.
%H Inder J. Taneja, <a href="https://rgmia.org/papers/v21/v21a75.pdf">Same Digits Embedded Palprimes</a>, RGMIA Research Report Collection (2018) Vol. 21, Article 75, 1-47.
%e As a triangle:
%e .........2
%e ........727
%e .......37273
%e .....333727333
%e ....93337273339
%e ..309333727333903
%e 1830933372733390381
%t d[n_] := IntegerDigits[n]; t = {x = 2}; Do[i = 1; While[! PrimeQ[y = FromDigits[Flatten[{z = d[i], d[x], Reverse[z]}]]], i++]; AppendTo[t, x = y], {n, 10}]; t (* _Jayanta Basu_, Jun 24 2013 *)
%o (Python)
%o from gmpy2 import digits, mpz, is_prime
%o A053600_list, p = [2], 2
%o for _ in range(30):
%o m, ps = 1, digits(p)
%o s = mpz('1'+ps+'1')
%o while not is_prime(s):
%o m += 1
%o ms = digits(m)
%o s = mpz(ms+ps+ms[::-1])
%o p = s
%o A053600_list.append(int(p)) # _Chai Wah Wu_, Apr 09 2015
%Y Cf. A000040, A002385, A047076, A052205, A034276, A256957, A052091, A052092, A261881.
%K base,nonn
%O 1,1
%A _G. L. Honaker, Jr._, Jan 20 2000