login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123230
Triangle read by rows: T(n,k) is the coefficient of x^k in the polynomial p(n,x) defined by p(0,x)=1, p(1,x)=1+x, p(n,x)=xp(n-1,x)+(-1)^(n+1)p(n-2,x) for n>=2.
1
1, 1, 1, -1, 1, 1, 1, 0, 1, 1, 1, 0, -1, 1, 1, 1, 1, 1, 0, 1, 1, -1, 1, 2, 0, -1, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, -2, 2, 3, 0, -1, 1, 1, 1, 1, 2, 0, 3, 3, 1, 0, 1, 1, -1, 1, 3, 0, -3, 3, 4, 0, -1, 1, 1
OFFSET
0,24
EXAMPLE
{1},
{1, 1},
{-1, 1, 1},
{1, 0, 1, 1},
{1, 0, -1, 1, 1},
{1, 1, 1, 0, 1, 1},
{-1, 1, 2, 0, -1, 1, 1},
{1, 0, 2, 2, 1, 0, 1, 1},
{1, 0, -2, 2, 3, 0, -1, 1,1},
{1, 1, 2, 0, 3, 3, 1, 0, 1, 1},
{-1, 1, 3, 0, -3, 3, 4, 0, -1, 1, 1}
MAPLE
P[0]:=1: P[1]:=1+x: for n from 2 to 14 do P[n]:=sort(expand(x*P[n-1]+(-1)^(n+1)*P[n-2])) od: for n from 0 to 14 do seq(coeff(P[n], x, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
p[0, x] = 1; p[1, x] = x + 1; p[k_, x_] := p[k, x] = x*p[k - 1, x] + (-1)^(n + 1)p[k - 2, x]; w = Table[CoefficientList[p[n, x], x], {n, 0, 10}]; Flatten[w]
CROSSREFS
Sequence in context: A112202 A126205 A025913 * A078821 A125184 A236575
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Oct 06 2006
EXTENSIONS
Edited by N. J. A. Sloane, Oct 29 2006
STATUS
approved