login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123233
Difference between the (10^n)-th prime and the Riemann-Gram approximation of the (10^n)-th prime.
0
1, 0, 5, -4, -39, -24, 1823, -6566, -1844, -34087, 84846, -449836, -1117632, -3465179, -1766196, -11290074, 105510354, -208774399, 704933861
OFFSET
0,3
COMMENTS
The algorithm in the PARI script below produces the 10^n-th prime accurate to first n/2 places. Conjecture: The sign of the terms in this sequence changes infinitely often. Based on the small sample presented here, it appears the negative terms occur much more often.
FORMULA
prime(10^x)-primeRG(10^x), where prime(n) is the n-th prime and primeRG(n)is an approximation of the n-th prime number based on an exponential bisection routine that uses the Riemann-Gram approximation of Pi(x). The flow of the routine is evident in the PARI script below.
a(n) = A006988(n) - A121046(n) for n >= 1. - Amiram Eldar, Jul 04 2024
EXAMPLE
a(1) = prime(10) - primeGR(10) = 29 - 29 = 0.
PROG
(PARI)
primeGR(n) =
\\ A good approximation for the n-th prime number using
\\ the Gram-Riemann approximation of Pi(x)
{ local(x, px, r1, r2, r, p10, b, e); b=10; p10=log(n)/log(10); if(Rg(b^p10*log(b^(p10+1)))< b^p10, m=p10+1, m=p10); r1 = 0; r2 = 7.18281828; for(x=1, 400, r=(r1+r2)/2; px = Rg(b^p10*log(b^(m+r))); if(px <= b^p10, r1=r, r2=r); r=(r1+r2)/2; ); floor(b^p10*log(b^(m+r))+.5); }
Rg(x) =
\\ Gram's Riemann's Approx of Pi(x)
{ local(n=1, L, s=1, r); L=r=log(x); while(s<10^40*r, s=s+r/zeta(n+1)/n; n=n+1; r=r*L/n); (s) }
CROSSREFS
Sequence in context: A298548 A078811 A093399 * A189748 A304151 A223527
KEYWORD
sign,hard,more
AUTHOR
Cino Hilliard, Oct 06 2006
EXTENSIONS
a(17)-a(18) from Amiram Eldar, Jul 04 2024
STATUS
approved