login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123232
Numbers n such that (2*n)^2 + 1 and (2*n)^2 + 3 are both prime.
1
1, 2, 5, 7, 37, 47, 65, 67, 73, 80, 115, 128, 163, 170, 175, 203, 215, 220, 235, 292, 317, 343, 350, 352, 392, 430, 460, 493, 527, 535, 578, 605, 662, 670, 677, 683, 697, 710, 728, 730, 782, 850, 892, 908, 938, 1003, 1040, 1048, 1087, 1235, 1267, 1285, 1300
OFFSET
1,2
LINKS
EXAMPLE
a(4) = 7 because 14^2 + 1 = 197 and 14^2 + 3 = 199 which are both prime.
MAPLE
for i from 1 to 1000 do if(isprime(i^2 +1) and isprime(i^2+3)) then print(i/2); end if; end do;
MATHEMATICA
Select[Range[1300], AllTrue[(2#)^2+{1, 3}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 15 2016 *)
PROG
(Magma) [n: n in [0..6000] | IsPrime((2*n)^2+1)and IsPrime((2*n)^2+3)] // Vincenzo Librandi, Nov 13 2010
CROSSREFS
Cf. A001359.
Sequence in context: A160621 A028432 A019409 * A042559 A197222 A062645
KEYWORD
nonn
AUTHOR
Ben Paul Thurston, Oct 06 2006
STATUS
approved