login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the coefficient of x^k in the polynomial p(n,x) defined by p(0,x)=1, p(1,x)=1+x, p(n,x)=xp(n-1,x)+(-1)^(n+1)p(n-2,x) for n>=2.
1

%I #7 Mar 12 2014 16:37:01

%S 1,1,1,-1,1,1,1,0,1,1,1,0,-1,1,1,1,1,1,0,1,1,-1,1,2,0,-1,1,1,1,0,2,2,

%T 1,0,1,1,1,0,-2,2,3,0,-1,1,1,1,1,2,0,3,3,1,0,1,1,-1,1,3,0,-3,3,4,0,-1,

%U 1,1

%N Triangle read by rows: T(n,k) is the coefficient of x^k in the polynomial p(n,x) defined by p(0,x)=1, p(1,x)=1+x, p(n,x)=xp(n-1,x)+(-1)^(n+1)p(n-2,x) for n>=2.

%e {1},

%e {1, 1},

%e {-1, 1, 1},

%e {1, 0, 1, 1},

%e {1, 0, -1, 1, 1},

%e {1, 1, 1, 0, 1, 1},

%e {-1, 1, 2, 0, -1, 1, 1},

%e {1, 0, 2, 2, 1, 0, 1, 1},

%e {1, 0, -2, 2, 3, 0, -1, 1,1},

%e {1, 1, 2, 0, 3, 3, 1, 0, 1, 1},

%e {-1, 1, 3, 0, -3, 3, 4, 0, -1, 1, 1}

%p P[0]:=1: P[1]:=1+x: for n from 2 to 14 do P[n]:=sort(expand(x*P[n-1]+(-1)^(n+1)*P[n-2])) od: for n from 0 to 14 do seq(coeff(P[n],x,k),k=0..n) od; # yields sequence in triangular form

%t p[0, x] = 1; p[1, x] = x + 1; p[k_, x_] := p[k, x] = x*p[k - 1, x] + (-1)^(n + 1)p[k - 2, x]; w = Table[CoefficientList[p[n, x], x], {n, 0, 10}]; Flatten[w]

%K sign,tabl

%O 0,24

%A _Roger L. Bagula_, Oct 06 2006

%E Edited by _N. J. A. Sloane_, Oct 29 2006