Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #63 Dec 30 2024 16:58:58
%S 1,1,2,4,6,10,15,22,32,46,64,89,122,165,222,296,390,512,668,864,1113,
%T 1426,1816,2304,2910,3658,4582,5718,7108,8808,10880,13394,16444,20132,
%U 24576,29927,36352,44046,53250,64234,77312,92864,111322,133184,159046
%N Number of ways to partition 2n into distinct positive integers.
%C Also, number of partitions of 2n into odd numbers. - _Vladeta Jovovic_, Aug 17 2004
%C This sequence was originally defined as the expansion of sum ( q^n / product( 1-q^k, k=1..2*n), n=0..inf ). The present definition is due to _Reinhard Zumkeller_. Michael Somos points out that the equivalence of the two definitions follows from Andrews, page 19.
%C Also, number of partitions of 2n with max descent 1 and last part 1. - _Wouter Meeussen_, Mar 31 2013
%D G. E. Andrews, The Theory of Partitions, Cambridge University Press, 1998, p. 19.
%H Alois P. Heinz, <a href="/A035294/b035294.txt">Table of n, a(n) for n = 0..10000</a>
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F a(n) = A000009(2*n). - _Michael Somos_, Mar 03 2003
%F Expansion of Sum_{n >= 0} q^n / Product_{k = 1..2*n} (1 - q^k).
%F a(n) = T(2*n, 0), T as defined in A026835.
%F G.f.: Product_{i >= 0} ((1 + x^(8*i + 1)) * (1 + x^(8*i + 2))^2 * (1 + x^(8*i + 3))^2 * (1 + x^(8*i + 4))^3 * (1 + x^(8*i + 5))^2 * (1 + x^(8*i + 6))^2 * (1 + x^(8*i + 7)) * (1 + x^(8*i + 8))^3). - _Vladeta Jovovic_, Oct 10 2004
%F G.f.: (Sum_{k>=0} x^A074378(k)) / (Product_{k>0} (1 - x^k)) = f( x^3, x^5) / f(-x, -x^2) where f(, ) is Ramanujan's general theta function. - _Michael Somos_, Nov 01 2005
%F Euler transform of period 16 sequence [1, 1, 2, 1, 2, 0, 1, 0, 1, 0, 2, 1, 2, 1, 1, 0, ...]. - _Michael Somos_, Dec 17 2002
%F a(n) ~ exp(sqrt(2*n/3)*Pi) / (2^(11/4) * 3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Oct 06 2015
%F a(n) = A000041(n) + A282893(n). - _Michael Somos_, Feb 24 2017
%F Convolution with A000041 is A058696. - _Michael Somos_, Feb 24 2017
%F Convolution with A097451 is A262987. - _Michael Somos_, Feb 24 2017
%F G.f.: 1/(1 - x)*Sum_{n>=0} x^floor((3*n+1)/2)/Product_{k = 1..n} (1 - x^k). - _Peter Bala_, Feb 04 2021
%F G.f.: Product_{n >= 1} (1 - q^(8*n))*(1 + q^(8*n-3))*(1 + q^(8*n-5))/(1 - q^n). - _Peter Bala_, Dec 30 2024
%e a(4)=6 [8=7+1=6+2=5+3=5+2+1=4+3+1=2*4].
%e G.f. = 1 + x + 2*x^2 + 4*x^3 + 6*x^4 + 10*x^5 + 15*x^6 + 22*x^7 + 46*x^9 + ...
%e G.f. = q + q^49 + 2*q^97 + 4*q^145 + 6*q^193 + 10*q^241 + 15*q^289 + ...
%p b:= proc(n, i) option remember; `if`(n=0, 1,
%p `if`(i<1, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i))))
%p end:
%p a:= n-> b(2*n, 2*n-1):
%p seq(a(n), n=0..50); # _Alois P. Heinz_, Feb 11 2015
%t Table[Count[IntegerPartitions[2 n], q_ /; Union[q] == Sort[q]], {n, 16}];
%t Table[Count[IntegerPartitions[2 n], q_ /; Count[q, _?EvenQ] == 0], {n, 16}];
%t Table[Count[IntegerPartitions[2 n], q_ /; Last[q] == 1 && Max[q - PadRight[Rest[q], Length[q]]] <= 1 ], {n, 16}];
%t (* _Wouter Meeussen_, Mar 31 2013 *)
%t a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] /QPochhammer[ x], {x, 0, 2 n}]; (* _Michael Somos_, May 06 2015 *)
%t a[ n_] := SeriesCoefficient[ QPochhammer[ -x^3, x^8] QPochhammer[ -x^5, x^8] QPochhammer[ x^8] / QPochhammer[ x], {x, 0, n}]; (* _Michael Somos_, May 06 2015 *)
%t nmax=60; CoefficientList[Series[Product[(1+x^(8*k+1)) * (1+x^(8*k+2))^2 * (1+x^(8*k+3))^2 * (1+x^(8*k+4))^3 * (1+x^(8*k+5))^2 * (1+x^(8*k+6))^2 * (1+x^(8*k+7)) * (1+x^(8*k+8))^3, {k,0,nmax}],{x,0,nmax}],x] (* _Vaclav Kotesovec_, Oct 06 2015 *)
%t b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-2] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[2n, 2n-1]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Aug 30 2016, after _Alois P. Heinz_ *)
%o (PARI) {a(n) = my(A); if( n<0, 0, n*=2; A = x * O(x^n); polcoeff( eta(x^2 + A) / eta(x + A), n))};/* _Michael Somos_, Nov 01 2005 */
%o (Haskell)
%o import Data.MemoCombinators (memo2, integral)
%o a035294 n = a035294_list !! n
%o a035294_list = f 1 where
%o f x = (p' 1 (x - 1)) : f (x + 2)
%o p' = memo2 integral integral p
%o p _ 0 = 1
%o p k m = if m < k then 0 else p' k (m - k) + p' (k + 2) m
%o -- _Reinhard Zumkeller_, Nov 27 2015
%Y Cf. A000009, A000041, A058686, A262987, A282893.
%Y Cf. A078408, A078406, A078407.
%Y Cf. A079122, A079126, A079124, A079125, A067953.
%Y Cf. A005408.
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_, _Bill Gosper_