

A342091


a(n) is the least number k such that k! has n distinct exponents in its prime factorization.


5



1, 2, 4, 6, 10, 15, 22, 33, 44, 55, 68, 85, 102, 119, 145, 174, 203, 232, 261, 296, 333, 370, 410, 451, 492, 533, 590, 656, 708, 767, 826, 885, 944, 1005, 1072, 1143, 1207, 1278, 1422, 1455, 1562, 1652, 1778, 1917, 2032, 2134, 2235, 2328, 2425, 2540, 2682, 2831, 2929
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

After n=0, first differs from A073818 at n = 27.
Is this sequence strictly increasing?


LINKS

Paul Erdős, Miscellaneous problems in number theory, Proceedings of the Eleventh Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, Man., 1981), Congr. Numer., Vol. 34 (1982), pp. 2545.


EXAMPLE

a(1) = 2 since 2! = 2^1 is the least factorial with a single exponent (1) in its prime factorization.
a(2) = 4 since 4! = 24 = 2^3 * 3^1 is the least factorial with 2 distinct exponents (1 and 3) in its prime factorization.
a(3) = 6 since 6! = 720 = 2^4 * 3^2 * 5^1 is the least factorial with 3 distinct exponents (1, 2 and 4) in its prime factorization.


MATHEMATICA

f[1] = 0; f[n_] := Length @ Union[FactorInteger[n!][[;; , 2]]]; seq[max_] := Module[{s = Table[0, {max}], n = 1, c = 0}, While[c < max, i = f[n] + 1; If[i <= max && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[50]


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



