OFFSET
0,3
COMMENTS
Also equal to the number of overpartitions of n with no non-overlined parts larger than the number of overlined parts. For example, the overpartitions counted by a(4) = 6 are: [4'], [3',1], [3',1'], [2',1,1], [2',1',1], [1',1,1,1]. - Jeremy Lovejoy, Aug 23 2021
REFERENCES
S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 10
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000
G. E. Andrews, Ramanujan's "lost" notebook. IV. Stacks and alternating parity in partitions, Adv. in Math. 53 (1984), 55-74.
B. Kim, E. Kim, and J. Lovejoy, On weighted overpartitions related to some q-series in Ramanujan's lost notebook, Int. J. Number Theory 17 (2021), 603-619.
FORMULA
G.f.: Sum_{k>=0} x^((k^2+k)/2) / ((1 - x) * (1 - x^2) ... (1 - x^k))^2.
a(n) ~ exp(2*Pi*sqrt(n/5)) / (2^(3/2) * 5^(3/4) * n). - Vaclav Kotesovec, Nov 20 2020
EXAMPLE
G.f. = 1 + q + 2*q^2 + 4*q^3 + 6*q^4 + 10*q^5 + 15*q^6 + 23*q^7 + 33*q^8 + ...
MAPLE
b:= proc(n, i) option remember;
`if`(i>n, 0, `if`(irem(n, i, 'r')=0, r, 0)+
add(j*b(n-i*j, i+1), j=1..n/i))
end:
a:= n-> `if`(n=0, 1, b(n, 1)):
seq(a(n), n=0..50); # Alois P. Heinz, Oct 03 2018
MATHEMATICA
m = 50;
Sum[x^(k(k+1)/2)/Product[1-x^j, {j, 1, k}]^2, {k, 0, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 20 2020 *)
PROG
(PARI) {a(n) = my(t); if(n<0, 0, t = 1 + x*O(x^n); polcoef(sum(k=1, (sqrtint(8*n + 1) - 1)\2, t = t*x^k/(1 - x^k)^2 + x*O(x^n), 1), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 28 2008
STATUS
approved