login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342092
Odd numbers k such that if k = A001065(m) for some m then m is a squarefree semiprime (A006881).
1
5, 9, 11, 17, 19, 23, 25, 27, 29, 35, 37, 39, 45, 47, 51, 53, 59, 61, 67, 69, 71, 75, 77, 79, 83, 85, 91, 93, 95, 99, 101, 103, 107, 111, 113, 115, 119, 125, 135, 139, 143, 147, 149, 151, 155, 159, 163, 165, 167, 171, 173, 179, 181, 187, 189, 197, 199, 207, 213
OFFSET
1,1
COMMENTS
Assuming that every even number above 6 is the sum of 2 distinct prime numbers, p + q (a slightly stronger version of the Goldbach conjecture), then every odd number m above 7 is of the form 1 + p + q, so A001065(p*q) = m. If this is true, then 5 is the only odd untouchable number (A005114).
Alanen (1972) suggested the study of odd numbers that are being "touched" only by Goldbach solutions, i.e., odd numbers k such that there is no solution m to A001065(m) = k which is not a squarefree semiprime. He suggested that perhaps these numbers deserved to be called "almost untouchable" numbers.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..8251 (terms below 10^5)
Jack David Alanen, Empirical study of aliquot series, Ph.D Thesis, Yale University, 1972.
Eric Weisstein's World of Mathematics, Untouchable Number.
Wikipedia, Untouchable number.
EXAMPLE
9 is a term since the only solution to A001065(m) = 9 is m = 3 * 5 = 15.
13 is not a term since there are 2 solutions to A001065(m) = 9, m = 27 = 3^3 and m = 35 = 5*7, and the first solution is not a semiprime.
MATHEMATICA
seq[max_] := Module[{v = Table[0, {max}]}, Do[If[! (PrimeOmega[n] == PrimeNu[n] == 2), k = DivisorSigma[1, n] - n; If[OddQ[k] && 2 <= k <= max, v[[k]]++]], {n, 1, max^2}]; Select[Rest[Position[v, _?(# == 0 &)] // Flatten], OddQ]]; seq[300]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Feb 27 2021
STATUS
approved