login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282893
The difference between the number of partitions of 2n into odd parts (A000009) and the number of partitions of 2n into even parts (A035363).
5
0, 0, 0, 1, 1, 3, 4, 7, 10, 16, 22, 33, 45, 64, 87, 120, 159, 215, 283, 374, 486, 634, 814, 1049, 1335, 1700, 2146, 2708, 3390, 4243, 5276, 6552, 8095, 9989, 12266, 15044, 18375, 22409, 27235, 33049, 39974, 48281, 58148, 69923, 83871, 100452, 120027, 143214, 170515, 202731, 240567, 285073, 337195
OFFSET
0,6
COMMENTS
The even bisection of A282892. The other bisection is A078408.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(n) = A282892(2n).
Expansion of (f(x^3, x^5) - 1) / f(-x, -x^2) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Feb 24 2017
a(n) = A035294(n) - A000041(n). - Michael Somos, Feb 24 2017
EXAMPLE
G.f. = x^3 + x^4 + 3*x^5 + 4*x^6 + 7*x^7 + 10*x^8 + 16*x^9 + 22*x^10 + 33*x^11 + ...
MAPLE
with(numtheory):
b:= proc(n, t) option remember; `if`(n=0, 1, add(add(`if`(
(d+t)::odd, d, 0), d=divisors(j))*b(n-j, t), j=1..n)/n)
end:
a:= n-> b(2*n, 0) -b(2*n, 1):
seq(a(n), n=0..80); # Alois P. Heinz, Feb 24 2017
MATHEMATICA
f[n_] := Length[ IntegerPartitions[n, All, 2Range[n] -1]] - Length[ IntegerPartitions[n, All, 2 Range[n]]]; Array[ f[2#] &, 52]
a[ n_] := SeriesCoefficient[ Sum[ Sign @ SquaresR[1, 16 k + 1] x^k, {k, n}] / QPochhammer[x], {x, 0, n}]; (* Michael Somos, Feb 24 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( sum(k=1, n, issquare(16*k + 1)*x^k, A) / eta(x + A), n))}; /* Michael Somos, Feb 24 2017 */
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Feb 24 2017
STATUS
approved