login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245161
Number of length n 0..6 arrays with new values introduced in order from both ends.
1
1, 1, 2, 4, 9, 23, 65, 199, 654, 2296, 8569, 33825, 140581, 612933, 2795181, 13298407, 65851100, 338654554, 1805083341, 9952373825, 56645932971, 332111798479, 2000990363889, 12357518954759, 78010845456554, 501994699807228
OFFSET
1,3
LINKS
FORMULA
Empirical: a(n) = 37*a(n-1) - 605*a(n-2) + 5765*a(n-3) - 35523*a(n-4) + 148371*a(n-5) - 427775*a(n-6) + 849335*a(n-7) - 1134976*a(n-8) + 969292*a(n-9) - 474720*a(n-10) + 100800*a(n-11) for n>12.
Empirical g.f.: x*(1 - 36*x + 570*x^2 - 5230*x^3 + 30829*x^4 - 122268*x^5 + 332049*x^6 - 616386*x^7 + 767435*x^8 - 616428*x^9 + 296529*x^10 - 69446*x^11) / ((1 - x)^2*(1 - 2*x)^2*(1 - 3*x)^2*(1 - 4*x)^2*(1 - 5*x)^2*(1 - 7*x)). - Colin Barker, Nov 03 2018
EXAMPLE
Some solutions for n=7:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..0....0....0....1....1....1....1....1....0....1....1....1....1....0....1....1
..0....1....1....1....1....0....1....0....0....2....2....2....1....0....0....1
..1....1....0....0....2....1....2....1....1....2....2....2....0....1....2....0
..0....0....1....1....1....0....1....2....1....0....1....2....0....1....1....0
..0....1....1....0....0....1....1....1....1....1....1....1....0....0....0....1
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
CROSSREFS
Column 6 of A245163.
Sequence in context: A245158 A245159 A245160 * A245162 A007476 A202552
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jul 12 2014
STATUS
approved