login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135225 Pascal's triangle A007318 augmented with a leftmost border column of 1's. 9
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 6, 4, 1, 1, 1, 5, 10, 10, 5, 1, 1, 1, 6, 15, 20, 15, 6, 1, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,9
COMMENTS
Row sums give A094373.
From Peter Bala, Sep 08 2011: (Start)
This augmented Pascal array, call it P, has interesting connections with the Bernoulli polynomials B(n,x). The infinitesimal generator S of P is the array such that exp(S) = P. The array S is obtained by augmenting the infinitesimal generator A132440 of the Pascal triangle with an initial column [0, 0, 1/2, 1/6, 0, -1/30, ...] on the left. The entries in this column, after the first two zeros, are the Bernoulli values B(n,1), n>=1.
The array P is also connected with the problem of summing powers of consecutive integers. In the array P^n, the entry in position p+1 of the first column is equal to sum {k = 1..n} k^p - see the Example section below.
For similar results for the square of Pascal's triangle see A062715.
Note: If we augment Pascal's triangle with the column [1, 1, x, x^2, x^3, ...] on the left, the resulting lower unit triangular array has the Bernoulli polynomials B(n,x) in the first column of its infinitesimal generator. The present case is when x = 1.
(End)
LINKS
FORMULA
A103451 * A007318 * A000012(signed), where A000012(signed) = (1; -1,1; 1,-1,1; ...); as infinite lower triangular matrices.
Given A007318, binomial(n,k) is shifted to T(n+1,k+1) and a leftmost border of 1's is added.
EXAMPLE
First few rows of the triangle:
1;
1, 1;
1, 1, 1;
1, 1, 2, 1;
1, 1, 3, 3, 1;
1, 1, 4, 6, 4, 1;
...
The infinitesimal generator for P begins:
/0
|0.......0
|1/2.....1...0
|1/6.....0...2....0
|0.......0...0....3....0
|-1/30...0...0....0....4....0
|0.......0...0....0....0....5....0
|1/42....0...0....0....0....0....6....0
|...
\
The array P^n begins:
/1
|1+1+...+1........1
|1+2+...+n........n.........1
|1+2^2+...+n^2....n^2.....2*n........1
|1+2^3+...+n^3....n^3.....3*n^2....3*n.......1
|...
\
More generally, the array P^t, defined as exp(t*S) for complex t, begins:
/1
|B(1,1+t)-B(1,1)..........1
|1/2*(B(2,1+t)-B(2,1))....t.........1
|1/3*(B(3,1+t)-B(3,1))....t^2.....2*t........1
|1/4*(B(4,1+t)-B(4,1))....t^3.....3*t^2....3*t.......1
|...
\
MAPLE
T:= proc(n, k) option remember;
if k=0 then 1
else binomial(n-1, k-1)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Nov 19 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0, 1, Binomial[n-1, k-1]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 19 2019 *)
PROG
(PARI) T(n, k) = if(k==0, 1, binomial(n-1, k-1)); \\ G. C. Greubel, Nov 19 2019
(Magma)
T:= func< n, k | k eq 0 select 1 else Binomial(n-1, k-1) >;
[T(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 19 2019
(Sage)
@CachedFunction
def T(n, k):
if (k==0): return 1
else: return binomial(n-1, k-1)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 19 2019
(GAP)
T:= function(n, k)
if k=0 then return 1;
else return Binomial(n-1, k-1);
fi; end;
Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Nov 19 2019
CROSSREFS
Sequence in context: A124445 A124279 A297299 * A208891 A177767 A047030
KEYWORD
nonn,easy,tabl
AUTHOR
Gary W. Adamson, Nov 23 2007
EXTENSIONS
Corrected by R. J. Mathar, Apr 16 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 20:33 EDT 2024. Contains 371916 sequences. (Running on oeis4.)