login
A135228
Triangle A000012(signed) * A007318 * A103451, read by rows.
2
1, 1, 1, 3, 1, 1, 5, 2, 2, 1, 11, 2, 4, 3, 1, 21, 3, 6, 7, 4, 1, 43, 3, 9, 13, 11, 5, 1, 85, 4, 12, 22, 24, 16, 6, 1, 171, 4, 16, 34, 46, 40, 22, 7, 1, 341, 5, 20, 50, 80, 86, 62, 29, 8, 1, 683, 5, 25, 70, 130, 166, 148, 91, 37, 9, 1, 1365, 6, 30, 95, 200, 296, 314, 239, 128, 46, 10, 1
OFFSET
0,4
COMMENTS
Row sums = A000975: (1, 2, 5, 10, 21, 42, 85, 170, ...).
Left border = A001045: (1, 1, 3, 5, 11, 21, 43, ...).
FORMULA
T(n,k) = A000012(signed) * A007318 * A103451 as infinite lower triangular matrices. A000012(signed) = (1; -1,1; 1,-1,1; ...).
T(n,k) = Sum_{j=0..floor((n-1)/2)} binomial(n-2*j-1, k-1), with T(n,0) =
(2^(n+1) - (-1)^(n+1))/3 (Jacobsthal_{n+1}).- G. C. Greubel, Nov 20 2019
EXAMPLE
First few rows of the triangle are:
1;
1, 1;
3, 1, 1;
5, 2, 2, 1;
11, 2, 4, 3, 1;
21, 3, 6, 7, 4, 1;
43, 3, 9, 13, 11, 5, 1;
85, 4, 12, 22, 24, 16, 6, 1;
171, 4, 16, 34, 46, 40, 22, 7, 1;
...
MAPLE
T:= proc(n, k) option remember;
if k=0 then (2^(n+1) +(-1)^n)/3
else add(binomial(n-2*j-1, k-1), j=0..floor((n-1)/2))
fi; end:
seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Nov 20 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0, (2^(n+1) +(-1)^n)/3, Sum[Binomial[n-1-2*j, k-1], {j, 0, Floor[(n-1)/2]}]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 20 2019 *)
PROG
(PARI) T(n, k) = if(k==0, (2^(n+1) +(-1)^n)/3, sum(j=0, (n-1)\2, binomial( n-2*j-1, k-1)) ); \\ G. C. Greubel, Nov 20 2019
(Magma)
function T(n, k)
if k eq 0 then return (2^(n+1) +(-1)^n)/3;
else return (&+[Binomial(n-2*j-1, k-1): j in [0..Floor((n-1)/2)]]);
end if; return T; end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2019
(Sage)
@CachedFunction
def T(n, k):
if (k==0): return (2^(n+1) +(-1)^n)/3
else: return sum(binomial(n-2*j-1, k-1) for j in (0..floor((n-1)/2)))
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 20 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Nov 23 2007
EXTENSIONS
Offset changed by G. C. Greubel, Nov 20 2019
STATUS
approved