login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135228
Triangle A000012(signed) * A007318 * A103451, read by rows.
2
1, 1, 1, 3, 1, 1, 5, 2, 2, 1, 11, 2, 4, 3, 1, 21, 3, 6, 7, 4, 1, 43, 3, 9, 13, 11, 5, 1, 85, 4, 12, 22, 24, 16, 6, 1, 171, 4, 16, 34, 46, 40, 22, 7, 1, 341, 5, 20, 50, 80, 86, 62, 29, 8, 1, 683, 5, 25, 70, 130, 166, 148, 91, 37, 9, 1, 1365, 6, 30, 95, 200, 296, 314, 239, 128, 46, 10, 1
OFFSET
0,4
COMMENTS
Row sums = A000975: (1, 2, 5, 10, 21, 42, 85, 170, ...).
Left border = A001045: (1, 1, 3, 5, 11, 21, 43, ...).
FORMULA
T(n,k) = A000012(signed) * A007318 * A103451 as infinite lower triangular matrices. A000012(signed) = (1; -1,1; 1,-1,1; ...).
T(n,k) = Sum_{j=0..floor((n-1)/2)} binomial(n-2*j-1, k-1), with T(n,0) =
(2^(n+1) - (-1)^(n+1))/3 (Jacobsthal_{n+1}).- G. C. Greubel, Nov 20 2019
EXAMPLE
First few rows of the triangle are:
1;
1, 1;
3, 1, 1;
5, 2, 2, 1;
11, 2, 4, 3, 1;
21, 3, 6, 7, 4, 1;
43, 3, 9, 13, 11, 5, 1;
85, 4, 12, 22, 24, 16, 6, 1;
171, 4, 16, 34, 46, 40, 22, 7, 1;
...
MAPLE
T:= proc(n, k) option remember;
if k=0 then (2^(n+1) +(-1)^n)/3
else add(binomial(n-2*j-1, k-1), j=0..floor((n-1)/2))
fi; end:
seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Nov 20 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0, (2^(n+1) +(-1)^n)/3, Sum[Binomial[n-1-2*j, k-1], {j, 0, Floor[(n-1)/2]}]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 20 2019 *)
PROG
(PARI) T(n, k) = if(k==0, (2^(n+1) +(-1)^n)/3, sum(j=0, (n-1)\2, binomial( n-2*j-1, k-1)) ); \\ G. C. Greubel, Nov 20 2019
(Magma)
function T(n, k)
if k eq 0 then return (2^(n+1) +(-1)^n)/3;
else return (&+[Binomial(n-2*j-1, k-1): j in [0..Floor((n-1)/2)]]);
end if; return T; end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2019
(Sage)
@CachedFunction
def T(n, k):
if (k==0): return (2^(n+1) +(-1)^n)/3
else: return sum(binomial(n-2*j-1, k-1) for j in (0..floor((n-1)/2)))
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 20 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Nov 23 2007
EXTENSIONS
Offset changed by G. C. Greubel, Nov 20 2019
STATUS
approved