login
A135226
Triangle A135225 + A007318 - A103451, read by rows.
3
1, 1, 1, 1, 3, 1, 1, 4, 5, 1, 1, 5, 9, 7, 1, 1, 6, 14, 16, 9, 1, 1, 7, 20, 30, 25, 11, 1, 1, 8, 27, 50, 55, 36, 13, 1, 1, 9, 35, 77, 105, 91, 49, 15, 1, 1, 10, 44, 112, 182, 196, 140, 64, 17, 1, 1, 11, 54, 156, 294, 378, 336, 204, 81, 19, 1
OFFSET
0,5
COMMENTS
Row sums = A083329: (1, 2, 5, 11, 23, 47, 95, ...).
FORMULA
T(n,k) = A135225(n,k) + A007318(n,k) - A103451(n,k) as infinite lower triangular matrices.
T(n,k) = ((n+k)/n)*binomial(n,k) with T(n,0) = T(n,n) = 1. - G. C. Greubel, Nov 20 2019
EXAMPLE
First few rows of the triangle:
1;
1, 1;
1, 3, 1;
1, 4, 5, 1;
1, 5, 9, 7, 1;
1, 6, 14, 16, 9, 1;
1, 7, 20, 30, 25, 11, 1;
1, 8, 27, 50, 55, 36, 13, 1;
...
MAPLE
T:= proc(n, k) option remember;
if k=0 or k=n then 1
else ((n+k)/n)*binomial(n, k)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Nov 20 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, ((n+k)/n) Binomial[n, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 20 2019 *)
PROG
(PARI) T(n, k) = if(k==0 || k==n, 1, ((n+k)/n)*binomial(n, k)); \\ G. C. Greubel, Nov 20 2019
(Magma)
T:= func< n, k | k eq 0 or k eq n select 1 else ((n+k)/n)*Binomial(n, k) >;
[T(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 20 2019
(Sage)
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
else: return ((n+k)/n)*binomial(n, k)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 20 2019
(GAP)
T:= function(n, k)
if k=0 or k=n then return 1;
else return ((n+k)/n)*Binomial(n, k);
fi; end;
Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Nov 20 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Nov 23 2007
EXTENSIONS
Corrected and extended by Philippe Deléham, Nov 14 2011
STATUS
approved