login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Pascal's triangle A007318 augmented with a leftmost border column of 1's.
9

%I #26 Mar 27 2022 19:02:48

%S 1,1,1,1,1,1,1,1,2,1,1,1,3,3,1,1,1,4,6,4,1,1,1,5,10,10,5,1,1,1,6,15,

%T 20,15,6,1,1,1,7,21,35,35,21,7,1,1,1,8,28,56,70,56,28,8,1

%N Pascal's triangle A007318 augmented with a leftmost border column of 1's.

%C Row sums give A094373.

%C From _Peter Bala_, Sep 08 2011: (Start)

%C This augmented Pascal array, call it P, has interesting connections with the Bernoulli polynomials B(n,x). The infinitesimal generator S of P is the array such that exp(S) = P. The array S is obtained by augmenting the infinitesimal generator A132440 of the Pascal triangle with an initial column [0, 0, 1/2, 1/6, 0, -1/30, ...] on the left. The entries in this column, after the first two zeros, are the Bernoulli values B(n,1), n>=1.

%C The array P is also connected with the problem of summing powers of consecutive integers. In the array P^n, the entry in position p+1 of the first column is equal to sum {k = 1..n} k^p - see the Example section below.

%C For similar results for the square of Pascal's triangle see A062715.

%C Note: If we augment Pascal's triangle with the column [1, 1, x, x^2, x^3, ...] on the left, the resulting lower unit triangular array has the Bernoulli polynomials B(n,x) in the first column of its infinitesimal generator. The present case is when x = 1.

%C (End)

%H G. C. Greubel, <a href="/A135225/b135225.txt">Rows n = 0..100 of triangle, flattened</a>

%F A103451 * A007318 * A000012(signed), where A000012(signed) = (1; -1,1; 1,-1,1; ...); as infinite lower triangular matrices.

%F Given A007318, binomial(n,k) is shifted to T(n+1,k+1) and a leftmost border of 1's is added.

%e First few rows of the triangle:

%e 1;

%e 1, 1;

%e 1, 1, 1;

%e 1, 1, 2, 1;

%e 1, 1, 3, 3, 1;

%e 1, 1, 4, 6, 4, 1;

%e ...

%e The infinitesimal generator for P begins:

%e /0

%e |0.......0

%e |1/2.....1...0

%e |1/6.....0...2....0

%e |0.......0...0....3....0

%e |-1/30...0...0....0....4....0

%e |0.......0...0....0....0....5....0

%e |1/42....0...0....0....0....0....6....0

%e |...

%e \

%e The array P^n begins:

%e /1

%e |1+1+...+1........1

%e |1+2+...+n........n.........1

%e |1+2^2+...+n^2....n^2.....2*n........1

%e |1+2^3+...+n^3....n^3.....3*n^2....3*n.......1

%e |...

%e \

%e More generally, the array P^t, defined as exp(t*S) for complex t, begins:

%e /1

%e |B(1,1+t)-B(1,1)..........1

%e |1/2*(B(2,1+t)-B(2,1))....t.........1

%e |1/3*(B(3,1+t)-B(3,1))....t^2.....2*t........1

%e |1/4*(B(4,1+t)-B(4,1))....t^3.....3*t^2....3*t.......1

%e |...

%e \

%p T:= proc(n, k) option remember;

%p if k=0 then 1

%p else binomial(n-1, k-1)

%p fi; end:

%p seq(seq(T(n, k), k=0..n), n=0..10); # _G. C. Greubel_, Nov 19 2019

%t T[n_, k_]:= T[n, k]= If[k==0, 1, Binomial[n-1, k-1]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Nov 19 2019 *)

%o (PARI) T(n,k) = if(k==0, 1, binomial(n-1, k-1)); \\ _G. C. Greubel_, Nov 19 2019

%o (Magma)

%o T:= func< n, k | k eq 0 select 1 else Binomial(n-1, k-1) >;

%o [T(n,k): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Nov 19 2019

%o (Sage)

%o @CachedFunction

%o def T(n,k):

%o if (k==0): return 1

%o else: return binomial(n-1, k-1)

%o [[T(n,k) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Nov 19 2019

%o (GAP)

%o T:= function(n,k)

%o if k=0 then return 1;

%o else return Binomial(n-1,k-1);

%o fi; end;

%o Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # _G. C. Greubel_, Nov 19 2019

%Y Cf. A007318, A027641, A027642, A062715, A094373, A103438, A132440.

%K nonn,easy,tabl

%O 0,9

%A _Gary W. Adamson_, Nov 23 2007

%E Corrected by _R. J. Mathar_, Apr 16 2013