OFFSET
0,9
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
Row n = coefficients in the expansion of x*(1 + x)^(n - 1) - 1, n > 0.
From Franck Maminirina Ramaharo, Oct 23 2018: (Start)
G.f.: (1 - 3*y + (2 + x)*y^2)/(1 - (2 + x)*y + (1 + x)*y^2).
E.g.f.: (2 + x - (1 + x)*exp(y) + x*exp((1 + x)*y))/(1 + x). (End)
From G. C. Greubel, Apr 22 2024: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A153881(n+1) - [n=1].
Sum_{k=0..floor(n/2)} T(n-k, k) = A000071(n-1) + [n=0].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = -A131026(n-1) + [n=0]. (End)
EXAMPLE
Triangle begins:
1;
-1, 1;
-1, 1, 1;
-1, 1, 2, 1;
-1, 1, 3, 3, 1;
-1, 1, 4, 6, 4, 1;
-1, 1, 5, 10, 10, 5, 1;
-1, 1, 6, 15, 20, 15, 6, 1;
-1, 1, 7, 21, 35, 35, 21, 7, 1;
-1, 1, 8, 28, 56, 70, 56, 28, 8, 1;
-1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1;
...
MATHEMATICA
Flatten[Table[If[n == 0, {1}, CoefficientList[x*(1 + x)^( n - 1) - 1, x]], {n, 0, 10}]]
PROG
(Maxima)
T(n, k) := if k = 0 then 2*floor(1/(n + 1)) - 1 else binomial(n - 1, k - 1)$
create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Oct 23 2018 */
(Magma)
A177767:= func< n, k | k eq n select 1 else k eq 0 select -1 else Binomial(n-1, k-1) >;
[A177767(n, k): k in [0..n], n in [0..13]]; // G. C. Greubel, Apr 22 2024
(SageMath)
flatten([[binomial(n-1, k-1) - int(k==0) + 2*int(n==0) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 22 2024
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, May 13 2010
EXTENSIONS
Edited and new name by Franck Maminirina Ramaharo, Oct 23 2018
STATUS
approved