login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177767
Triangle read by rows: T(n,k) = binomial(n - 1, k - 1), 1 <= k <= n, and T(n,0) = A153881(n+1), n >= 0.
1
1, -1, 1, -1, 1, 1, -1, 1, 2, 1, -1, 1, 3, 3, 1, -1, 1, 4, 6, 4, 1, -1, 1, 5, 10, 10, 5, 1, -1, 1, 6, 15, 20, 15, 6, 1, -1, 1, 7, 21, 35, 35, 21, 7, 1, -1, 1, 8, 28, 56, 70, 56, 28, 8, 1, -1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, -1, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1
OFFSET
0,9
COMMENTS
Row sums yield A000225 preceded by 1.
Except for signs, this is A135225.
FORMULA
Row n = coefficients in the expansion of x*(1 + x)^(n - 1) - 1, n > 0.
From Franck Maminirina Ramaharo, Oct 23 2018: (Start)
G.f.: (1 - 3*y + (2 + x)*y^2)/(1 - (2 + x)*y + (1 + x)*y^2).
E.g.f.: (2 + x - (1 + x)*exp(y) + x*exp((1 + x)*y))/(1 + x). (End)
From G. C. Greubel, Apr 22 2024: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A153881(n+1) - [n=1].
Sum_{k=0..floor(n/2)} T(n-k, k) = A000071(n-1) + [n=0].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = -A131026(n-1) + [n=0]. (End)
EXAMPLE
Triangle begins:
1;
-1, 1;
-1, 1, 1;
-1, 1, 2, 1;
-1, 1, 3, 3, 1;
-1, 1, 4, 6, 4, 1;
-1, 1, 5, 10, 10, 5, 1;
-1, 1, 6, 15, 20, 15, 6, 1;
-1, 1, 7, 21, 35, 35, 21, 7, 1;
-1, 1, 8, 28, 56, 70, 56, 28, 8, 1;
-1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1;
...
MATHEMATICA
Flatten[Table[If[n == 0, {1}, CoefficientList[x*(1 + x)^( n - 1) - 1, x]], {n, 0, 10}]]
PROG
(Maxima)
T(n, k) := if k = 0 then 2*floor(1/(n + 1)) - 1 else binomial(n - 1, k - 1)$
create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Oct 23 2018 */
(Magma)
A177767:= func< n, k | k eq n select 1 else k eq 0 select -1 else Binomial(n-1, k-1) >;
[A177767(n, k): k in [0..n], n in [0..13]]; // G. C. Greubel, Apr 22 2024
(SageMath)
flatten([[binomial(n-1, k-1) - int(k==0) + 2*int(n==0) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 22 2024
KEYWORD
sign,tabl,easy
AUTHOR
Roger L. Bagula, May 13 2010
EXTENSIONS
Edited and new name by Franck Maminirina Ramaharo, Oct 23 2018
STATUS
approved