login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = binomial(n - 1, k - 1), 1 <= k <= n, and T(n,0) = A153881(n+1), n >= 0.
1

%I #19 Apr 22 2024 13:34:25

%S 1,-1,1,-1,1,1,-1,1,2,1,-1,1,3,3,1,-1,1,4,6,4,1,-1,1,5,10,10,5,1,-1,1,

%T 6,15,20,15,6,1,-1,1,7,21,35,35,21,7,1,-1,1,8,28,56,70,56,28,8,1,-1,1,

%U 9,36,84,126,126,84,36,9,1,-1,1,10,45,120,210,252,210,120,45,10,1

%N Triangle read by rows: T(n,k) = binomial(n - 1, k - 1), 1 <= k <= n, and T(n,0) = A153881(n+1), n >= 0.

%C Row sums yield A000225 preceded by 1.

%C Except for signs, this is A135225.

%H G. C. Greubel, <a href="/A177767/b177767.txt">Rows n = 0..50 of the triangle, flattened</a>

%F Row n = coefficients in the expansion of x*(1 + x)^(n - 1) - 1, n > 0.

%F From _Franck Maminirina Ramaharo_, Oct 23 2018: (Start)

%F G.f.: (1 - 3*y + (2 + x)*y^2)/(1 - (2 + x)*y + (1 + x)*y^2).

%F E.g.f.: (2 + x - (1 + x)*exp(y) + x*exp((1 + x)*y))/(1 + x). (End)

%F From _G. C. Greubel_, Apr 22 2024: (Start)

%F Sum_{k=0..n} (-1)^k*T(n, k) = A153881(n+1) - [n=1].

%F Sum_{k=0..floor(n/2)} T(n-k, k) = A000071(n-1) + [n=0].

%F Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = -A131026(n-1) + [n=0]. (End)

%e Triangle begins:

%e 1;

%e -1, 1;

%e -1, 1, 1;

%e -1, 1, 2, 1;

%e -1, 1, 3, 3, 1;

%e -1, 1, 4, 6, 4, 1;

%e -1, 1, 5, 10, 10, 5, 1;

%e -1, 1, 6, 15, 20, 15, 6, 1;

%e -1, 1, 7, 21, 35, 35, 21, 7, 1;

%e -1, 1, 8, 28, 56, 70, 56, 28, 8, 1;

%e -1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1;

%e ...

%t Flatten[Table[If[n == 0, {1}, CoefficientList[x*(1 + x)^( n - 1) - 1, x]], {n, 0, 10}]]

%o (Maxima)

%o T(n, k) := if k = 0 then 2*floor(1/(n + 1)) - 1 else binomial(n - 1, k - 1)$

%o create_list(T(n, k), n, 0, 12, k, 0, n); /* _Franck Maminirina Ramaharo_, Oct 23 2018 */

%o (Magma)

%o A177767:= func< n,k | k eq n select 1 else k eq 0 select -1 else Binomial(n-1, k-1) >;

%o [A177767(n,k): k in [0..n], n in [0..13]]; // _G. C. Greubel_, Apr 22 2024

%o (SageMath)

%o flatten([[binomial(n-1, k-1) - int(k==0) + 2*int(n==0) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Apr 22 2024

%Y Cf. A000225, A000071, A007318, A014473, A097805, A131026, A135225.

%K sign,tabl,easy

%O 0,9

%A _Roger L. Bagula_, May 13 2010

%E Edited and new name by _Franck Maminirina Ramaharo_, Oct 23 2018