login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227528
a(n) = numerator of r(n) = 2*(3*n+2)!/((2*n)!*2^n), n>=0.
2
4, 60, 840, 13860, 270270, 6126120, 158722200, 4633467300, 150587687250, 5394582443250, 211240491462000, 8977720887135000, 411608985890602500, 20251162105817643000, 1064311075116860571000, 59509669251792738478500, 3527387653231263127556250, 220942735734212754080568750
OFFSET
0,1
COMMENTS
The first values with denominators > 1 occur at n = {84, 148, 164, 168, 169, 276, 292, 296, 297, ...}. - G. C. Greubel, Jul 04 2017
LINKS
FORMULA
In Maple notation,
E.g.f. of r: ((135/8)*z+4)*cos((2/3)*arcsin((3/4)*sqrt(6)*sqrt(z)))/(1-(27/8)*z)^2+(3/8)*sqrt(z)*((135/4)*z+17)*sin((2/3)*arcsin((3/4)*sqrt(6)*sqrt(z)))*sqrt(6)/(1-(27/8)*z)^(5/2).
E.g.f. of r: 4*hypergeom([4/3,5/3],[1/2],27*z/8).
Integral representation as n-th moment of a signed function w(x) of bounded variation on (0,infinity),
w(x)=(8/3)*sqrt(3)*((1/36) *(128*x^2/81-40*x/3+20) *exp(-4*x/27) *BesselK(1/3,(4/27)*x)/Pi +(2/81)*x *(-5+16*x/9) *exp(-4*x/27) *BesselK(4/3,4*x/27)/Pi);
w(x)=-(14/243)*16^(2/3)*x^(2/3)*3 *hypergeom([13/6], [4/3], -(8/27)*x)/GAMMA(2/3)-(10/243)*sqrt(3)*16^(1/3)*x^(1/3)*9*GAMMA(2/3)*hypergeom([11/6], [2/3], -(8/27)*x)/Pi.
For x>3.32, w(x)>0.
w(0)=w(3.32)=limit(w(x),x=infinity)=0.
For x<3.32, w(x)<0.
r(n) = int(x^n*w(x), x=0..infinity), n>=0.
Asymptotics: r(n)->(1/1152)*sqrt(6)*(10368*n^2+10224*n+2161)*(27/8)^n*exp(-n)*(n^n), for n->infinity.
The rational values are given by 4*(-2*n+1)*r(n) + 3*(3*n+2)*(3*n+1) * r(n-1)=0. - R. J. Mathar, Jul 20 2013
MAPLE
seq(numer(4*(3*n+2)!/((2*n)!*2^(n+1))), n=0..14);
MATHEMATICA
Table[Numerator[2(3n + 2)!/((2n)! 2^n)], {n, 0, 84}] (* G. C. Greubel, Jul 04 2017 *)
PROG
(PARI) for(n=0, 50, print1(numerator(2*(3*n + 2)!/((2*n)!*2^n)), ", ")) \\ G. C. Greubel, Jul 04 2017
CROSSREFS
Cf. A001879.
Sequence in context: A055315 A013482 A123480 * A156090 A181418 A208890
KEYWORD
nonn,frac
AUTHOR
Karol A. Penson, Jul 14 2013
EXTENSIONS
Erroneous definition corrected by G. C. Greubel, Jul 04 2017
STATUS
approved