login
A055315
Number of labeled trees with n nodes and 3 leaves.
2
4, 60, 720, 8400, 100800, 1270080, 16934400, 239500800, 3592512000, 57081024000, 958961203200, 16999766784000, 317328979968000, 6224529991680000, 128047474114560000, 2757288942600192000, 62039001208504320000, 1456091851893719040000, 35593356379624243200000
OFFSET
4,1
FORMULA
a(n) = (n!/3!)*stirling2(n-2, n-3). - Vladeta Jovovic, Jan 28 2004
a(n) = n! * (n-3)*(n-2)/12. - Vaclav Kotesovec, Jul 25 2014
E.g.f.: x*(x/(1-x))^3/3! - Geoffrey Critzer, Sep 19 2017
MAPLE
a:=n->sum((n-j)*n!/3!, j=3..n): seq(a(n), n=4..19); # Zerinvary Lajos, Apr 29 2007
MATHEMATICA
Table[n!*(n-3)*(n-2)/12, {n, 4, 20}] (* Vaclav Kotesovec, Jul 25 2014 *)
PROG
(Magma) [Factorial(n)*(n-3)*(n-2)/12: n in [4..25]]; // Vincenzo Librandi, Jul 25 2014
(PARI) for(n=4, 30, print1(n!*(n-3)*(n-2)/12, ", ")) \\ G. C. Greubel, Feb 07 2018
CROSSREFS
Column 3 of A055314.
Sequence in context: A247739 A007220 A034866 * A013482 A123480 A227528
KEYWORD
nonn
AUTHOR
Christian G. Bower, May 11 2000
STATUS
approved