login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = numerator of r(n) = 2*(3*n+2)!/((2*n)!*2^n), n>=0.
2

%I #31 Jul 05 2017 21:11:05

%S 4,60,840,13860,270270,6126120,158722200,4633467300,150587687250,

%T 5394582443250,211240491462000,8977720887135000,411608985890602500,

%U 20251162105817643000,1064311075116860571000,59509669251792738478500,3527387653231263127556250,220942735734212754080568750

%N a(n) = numerator of r(n) = 2*(3*n+2)!/((2*n)!*2^n), n>=0.

%C The first values with denominators > 1 occur at n = {84, 148, 164, 168, 169, 276, 292, 296, 297, ...}. - _G. C. Greubel_, Jul 04 2017

%H G. C. Greubel, <a href="/A227528/b227528.txt">Table of n, a(n) for n = 0..370</a>

%F In Maple notation,

%F E.g.f. of r: ((135/8)*z+4)*cos((2/3)*arcsin((3/4)*sqrt(6)*sqrt(z)))/(1-(27/8)*z)^2+(3/8)*sqrt(z)*((135/4)*z+17)*sin((2/3)*arcsin((3/4)*sqrt(6)*sqrt(z)))*sqrt(6)/(1-(27/8)*z)^(5/2).

%F E.g.f. of r: 4*hypergeom([4/3,5/3],[1/2],27*z/8).

%F Integral representation as n-th moment of a signed function w(x) of bounded variation on (0,infinity),

%F w(x)=(8/3)*sqrt(3)*((1/36) *(128*x^2/81-40*x/3+20) *exp(-4*x/27) *BesselK(1/3,(4/27)*x)/Pi +(2/81)*x *(-5+16*x/9) *exp(-4*x/27) *BesselK(4/3,4*x/27)/Pi);

%F w(x)=-(14/243)*16^(2/3)*x^(2/3)*3 *hypergeom([13/6], [4/3], -(8/27)*x)/GAMMA(2/3)-(10/243)*sqrt(3)*16^(1/3)*x^(1/3)*9*GAMMA(2/3)*hypergeom([11/6], [2/3], -(8/27)*x)/Pi.

%F For x>3.32, w(x)>0.

%F w(0)=w(3.32)=limit(w(x),x=infinity)=0.

%F For x<3.32, w(x)<0.

%F r(n) = int(x^n*w(x), x=0..infinity), n>=0.

%F Asymptotics: r(n)->(1/1152)*sqrt(6)*(10368*n^2+10224*n+2161)*(27/8)^n*exp(-n)*(n^n), for n->infinity.

%F The rational values are given by 4*(-2*n+1)*r(n) + 3*(3*n+2)*(3*n+1) * r(n-1)=0. - _R. J. Mathar_, Jul 20 2013

%p seq(numer(4*(3*n+2)!/((2*n)!*2^(n+1))), n=0..14);

%t Table[Numerator[2(3n + 2)!/((2n)! 2^n)], {n, 0, 84}] (* _G. C. Greubel_, Jul 04 2017 *)

%o (PARI) for(n=0,50, print1(numerator(2*(3*n + 2)!/((2*n)!*2^n)), ", ")) \\ _G. C. Greubel_, Jul 04 2017

%Y Cf. A001879.

%K nonn,frac

%O 0,1

%A _Karol A. Penson_, Jul 14 2013

%E Erroneous definition corrected by _G. C. Greubel_, Jul 04 2017