login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057048
a(n) = A017911(n+1) = round(sqrt(2)^(n+1)).
6
1, 2, 3, 4, 6, 8, 11, 16, 23, 32, 45, 64, 91, 128, 181, 256, 362, 512, 724, 1024, 1448, 2048, 2896, 4096, 5793, 8192, 11585, 16384, 23170, 32768, 46341, 65536, 92682, 131072, 185364, 262144, 370728, 524288, 741455, 1048576
OFFSET
0,2
COMMENTS
If the natural numbers A000027 are written as a triangle, then a(n) gives the row of the triangle in which the number 2^n can be found. See A017911 for a more elaborate explanation and relation with A000217. [Original definition by Clark Kimberling, Jul 30 2000, clarified by M. F. Hasler, Feb 20 2012, following an observation from T. D. Noe, Apr 27 2003]
LINKS
FORMULA
a(2n-1) = 2^n, n > 0. - M. F. Hasler, Feb 20 2012
EXAMPLE
Write the natural numbers A000027 as a triangle:
row 1: 1 . . . <- 2^0 in row 1=a(0)
row 2: 2 3 . . . <- 2^1 in row 2=a(1)
row 3: 4 5 6 . . . <- 2^2 in row 3=a(2)
row 4: 7 8 9 10 . . <- 2^3 in row 4=a(3)
row 5: 11 12 13 14 15
row 6: 16 17 18 19 20 21 <- 2^4 in row 6=a(4).
MATHEMATICA
Table[Round[Sqrt[2]^(n+1)], {n, 0, 50}] (* Vincenzo Librandi, Mar 24 2013 *)
PROG
(PARI) A057048(n)=round(sqrt(2^(n+1))) /* for large values, an implementation using integer arithmetic would be preferable */ \\ M. F. Hasler, Feb 20 2012
(PARI) a(n)=sqrtint(2^(n+1)) \\ Charles R Greathouse IV, Aug 19 2016
(Magma) [Round(Sqrt(2)^(n+1)): n in [0..50]]; // Vincenzo Librandi, Mar 24 2013
(Python)
from math import isqrt
def A057048(n): return -isqrt(m:=1<<n+1)+isqrt(m<<2) # Chai Wah Wu, Jun 18 2024
CROSSREFS
Sequence in context: A317669 A208887 A017911 * A281094 A054782 A261082
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Feb 20 2012
STATUS
approved