login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057051
Number of polyominoes of 2n-1 cells that span an n X n square.
1
1, 1, 6, 18, 73, 255, 950, 3473, 13006, 48840, 185353, 706404, 2706608, 10404625, 40126430, 155133811, 601119492, 2333671638, 9075290555, 35345525798, 137847145330, 538258922839, 2104101413400, 8233434921693, 32247613423563, 126410623214720, 495918571702575
OFFSET
1,3
LINKS
D. E. Knuth, Animals in a cage, Problem 10875, Amer. Math. Monthly, 110 (March 2003), 243-245.
R. Parkin, L. J. Lander, and D. R. Parkin, Polyomino Enumeration Results, presented at SIAM Fall Meeting, 1967, and accompanying letter from T. J. Lander (annotated scanned copy) page 9 (incorrect at n=15).
FORMULA
See Maple code.
MAPLE
A057051 := proc(n) if n mod 2 = 0 then binomial(2*n-2, n-1)+2^(n-2)-(3*n^2-2*n+8)/8; else binomial(2*n-2, n-1)+2^(n-2)-(3*n^2-4*n+9)/8+(1/2)*binomial(n-1, (n-1)/2); end if; end proc;
MATHEMATICA
f[n_] := If[EvenQ[n], Binomial[2n-2, n-1] + 2^(n-2) - (3n^2-2n+8)/8, Binomial[2n-2, n-1] + 2^(n-2) - (3n^2-4n+9)/8 + (1/2) Binomial[n-1, (n-1)/2]]; Table[f[n], {n, 1, 27}] (* Jean-François Alcover, Mar 18 2017, translated from Maple *)
CROSSREFS
Sequence in context: A129796 A129790 A121156 * A318069 A332939 A299412
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 08 2003
STATUS
approved