login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (s(n)-(n mod 2)) / n where s(n) is A006533.
1

%I #6 May 13 2022 18:43:26

%S 0,1,1,2,3,5,8,11,18,23,35,38,61,69,98,107,148,138,213,226,295,311,

%T 396,377,518,539,663,686,833,717,1030,1059,1256,1289,1513,1472,1803,

%U 1843,2128,2171,2490,2328,2891,2942,3333,3389,3818,3735,4348,4413,4925,4994

%N a(n) = (s(n)-(n mod 2)) / n where s(n) is A006533.

%H Michael De Vlieger, <a href="/A056891/b056891.txt">Table of n, a(n) for n = 1..10000</a>

%e a(1) = (1-1) / 1 = 0; a(2) = (2) / 2 = 1; a(3) = (4-1) / 3 = 1; a(4) = (8) / 4 = 2; ...

%t Block[{f, g}, f[m_, n_] := Boole[Mod[n, m] == 0]; g[n_] := (n^4 - 6 n^3 + 23 n^2 - 18 n + 24)/24 + f[2, n] (-5 n^3 + 42 n^2 - 40 n - 48)/48 - f[4, n] (3 n/4) + f[6, n] (-53 n^2 + 310 n)/12 + f[12, n] (49 n/2) + f[18, n]*32 n + f[24, n]*19 n - f[30, n]*36 n - f[42, n]*50 n - f[60, n]*190 n - f[84, n]*78 n - f[90, n]*48 n - f[120, n]*78 n - f[210, n]*48 n; Array[(g[#] - Mod[#, 2])/# &, 52]] (* _Michael De Vlieger_, May 13 2022, after _T. D. Noe_ at A006533 *)

%Y Cf. A006533.

%K easy,nonn

%O 1,4

%A Tod A. Jebe (tjebe(AT)home.com), Sep 05 2000

%E More terms from _Sean A. Irvine_, May 13 2022