login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377846
Powerful numbers that are not divisible by the cubes of more than one distinct prime.
2
1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169, 196, 200, 225, 243, 256, 288, 289, 324, 343, 361, 392, 400, 441, 484, 500, 512, 529, 576, 625, 675, 676, 729, 784, 800, 841, 900, 961, 968, 972, 1024, 1089, 1125, 1152, 1156, 1225
OFFSET
1,2
COMMENTS
Subsequence of A377821 and first differs from it at n = 33: A377821(33) = 432 = 2^4 * 3^3 is not a term of this sequence.
Numbers whose prime factorization has exponents that are all larger than 1 and no more than one exponent is larger than 2.
FORMULA
Sum_{n>=1} 1/a(n) = (15/Pi^2) * (1 + Sum_{p prime} 1/((p-1)*(p^2+1))) = 1.92240214785252516795... .
MATHEMATICA
q[n_] := Module[{e = Sort[FactorInteger[n][[;; , 2]]]}, Length[e] == 1 || e[[-2]] == 2]; With[{max = 1300}, Select[Union@ Flatten@ Table[i^2 * j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}], # == 1 || q[#] &]]
PROG
(PARI) is(k) = if(k == 1, 1, my(e = vecsort(factor(k)[, 2])); e[1] > 1 && (#e == 1 || e[#e - 1] == 2));
CROSSREFS
Complement of A376936 within A001694.
Subsequence of A377821.
Subsequences: A143610, A377847.
Cf. A082020.
Sequence in context: A080366 A001694 A377821 * A317102 A157985 A001597
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Nov 09 2024
STATUS
approved