The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317102 Powerful numbers whose distinct prime multiplicities are pairwise indivisible. 8
 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 169, 196, 200, 216, 225, 243, 256, 288, 289, 343, 361, 392, 432, 441, 484, 500, 512, 529, 625, 648, 675, 676, 729, 800, 841, 864, 900, 961, 968, 972, 1000, 1024, 1089, 1125, 1152, 1156, 1225 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A number is powerful if its prime multiplicities are all greater than 1. LINKS Robert Israel, Table of n, a(n) for n = 1..3000 EXAMPLE 144 = 2^4 * 3^2 is not in the sequence because 4 and 2 are not pairwise indivisible. MAPLE filter:= proc(n) local L, i, j, q;   L:= convert(map(t -> t[2], ifactors(n)[2]), set);   if min(L) = 1 then return false fi;   for j from 2 to nops(L) do     for i from 1 to j-1 do       q:= L[i]/L[j];       if q::integer or (1/q)::integer then return false fi;   od od;   true end proc: select(filter, [\$4..10000]); # Robert Israel, Jun 23 2019 MATHEMATICA Select[Range[1000], And[Max@@Last/@FactorInteger[#]>=2, Select[Tuples[Last/@FactorInteger[#], 2], And[UnsameQ@@#, Divisible@@#]&]=={}]&] CROSSREFS Cf. A001694, A056239, A112798, A118914, A124010, A285572, A285573, A303362, A304713, A316475, A317101, A317616. Sequence in context: A339497 A080366 A001694 * A157985 A001597 A072777 Adjacent sequences:  A317099 A317100 A317101 * A317103 A317104 A317105 KEYWORD nonn AUTHOR Gus Wiseman, Aug 01 2018 EXTENSIONS Definition corrected and a(1)=1 inserted by Robert Israel, Jun 23 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 22 17:18 EDT 2021. Contains 345388 sequences. (Running on oeis4.)