OFFSET
1,2
COMMENTS
A number is powerful if its prime multiplicities are all greater than 1.
LINKS
Robert Israel, Table of n, a(n) for n = 1..3000
EXAMPLE
144 = 2^4 * 3^2 is not in the sequence because 4 and 2 are not pairwise indivisible.
MAPLE
filter:= proc(n) local L, i, j, q;
L:= convert(map(t -> t[2], ifactors(n)[2]), set);
if min(L) = 1 then return false fi;
for j from 2 to nops(L) do
for i from 1 to j-1 do
q:= L[i]/L[j];
if q::integer or (1/q)::integer then return false fi;
od od;
true
end proc:
select(filter, [$4..10000]); # Robert Israel, Jun 23 2019
MATHEMATICA
Select[Range[1000], And[Max@@Last/@FactorInteger[#]>=2, Select[Tuples[Last/@FactorInteger[#], 2], And[UnsameQ@@#, Divisible@@#]&]=={}]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 01 2018
EXTENSIONS
Definition corrected and a(1)=1 inserted by Robert Israel, Jun 23 2019
STATUS
approved