login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377843
Cogrowth sequence of the 16-element group C4 X C2 X C2 = <S,T,U | S^4, T^2, U^2, [S,T], [S,U], [T,U]>.
1
1, 2, 9, 62, 689, 7322, 69369, 616982, 5422049, 48197042, 433434729, 3913915502, 35311723409, 317999340362, 2860994944089, 25738114039622, 231602961592769, 2084457277181282, 18761300850805449, 168858054223133342, 1519730933499158129, 13677470410291063802
OFFSET
0,2
COMMENTS
Gives the even terms, all the odd terms are 0.
FORMULA
G.f.: (38*x^4+127*x^3-57*x^2+13*x-1) / ((1-x) * (9*x-1) * (x+1) * (25*x^2-6*x+1)).
E.g.f.: (2*exp(3*x)*cos(4*x) + 5*cosh(x) + cosh(9*x) + sinh(x) + sinh(9*x))/8. - Stefano Spezia, Nov 10 2024
EXAMPLE
a(2)=9 corresponds to the words SSSS, TTTT, UUUU, TTUU, TUUT, UUTT, TUTU, UTUT, UTTU.
MATHEMATICA
LinearRecurrence[{15, -78, 210, 79, -225}, {1, 2, 9, 62, 689}, 22] (* James C. McMahon, Nov 10 2024 *)
CROSSREFS
Cf. A070775 (C4 X C4), A377714 (C4 X C2), A377840 (C8 X C2), A007582 (D8).
Sequence in context: A213528 A100262 A166886 * A212413 A003577 A085928
KEYWORD
nonn,easy
AUTHOR
Sean A. Irvine, Nov 09 2024
STATUS
approved