login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143610 Numbers of the form p^2*q^3, where p,q are distinct primes. 15
72, 108, 200, 392, 500, 675, 968, 1125, 1323, 1352, 1372, 2312, 2888, 3087, 3267, 4232, 4563, 5324, 6125, 6728, 7688, 7803, 8575, 8788, 9747, 10952, 11979, 13448, 14283, 14792, 15125, 17672, 19652, 19773, 21125, 22472, 22707, 25947, 27436 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Also: numbers with prime signature {3,2}.

This is a subsequence of A114128. [Hasler]

Every a(n) is an Achilles number (A052486). They are minimal, meaning no proper divisor is an Achilles number. - Antonio Roldán, Dec 27 2011

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

Project Euler, Problem 200.

Index to sequences related to prime signature

EXAMPLE

The first elements of this sequence are 3^2*2^3 = 72, 2^2*3^3 = 108, 5^2*2^3 = 200.

MATHEMATICA

f[n_] := Sort[Last/@FactorInteger[n]] == {2, 3}; Select[Range[30000], f] (* Vladimir Joseph Stephan Orlovsky, Oct 09 2009 *)

PROG

(PARI) for(n=1, 10^5, omega(n)==2 || next; vecsort(factor(n)[, 2])==[2, 3]~ && print1(n", ")) \\ Hasler

(PARI) list(lim)=my(v=List(), t); forprime(p=2, (lim\4)^(1/3), t=p^3; forprime(q=2, sqrt(lim\t), if(p==q, next); listput(v, t*q^2))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011

CROSSREFS

Cf. A114128.

Sequence in context: A072412 A052486 A114128 * A166987 A251124 A169644

Adjacent sequences:  A143607 A143608 A143609 * A143611 A143612 A143613

KEYWORD

easy,nonn

AUTHOR

M. F. Hasler, Aug 27 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 22 03:22 EDT 2017. Contains 289648 sequences.