login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A375074
Numbers whose prime factorization exponents include at least one 2, at least one 3 and no higher exponents.
2
72, 108, 200, 360, 392, 500, 504, 540, 600, 675, 756, 792, 936, 968, 1125, 1176, 1188, 1224, 1323, 1350, 1352, 1368, 1372, 1400, 1404, 1500, 1656, 1800, 1836, 1960, 2052, 2088, 2200, 2232, 2250, 2312, 2484, 2520, 2600, 2646, 2664, 2700, 2888, 2904, 2952, 3087
OFFSET
1,1
COMMENTS
Numbers whose powerful part (A057521) is a term of A375073.
The asymptotic density of this sequence is 1/zeta(4) - 1/zeta(3) + 1/zeta(2) - zeta(6)/(zeta(2) * zeta(3)) * c = A215267 - A088453 + A059956 - A068468 * c = 0.0156712080080470088619..., where c = Product_{p prime} (1 + 2/p^3 - 1/p^4 + 1/p^5).
FORMULA
A051903(a(n)) = 3.
MATHEMATICA
Select[Range[3000], Union[Select[FactorInteger[#][[;; , 2]], # > 1 &]] == {2, 3} &]
PROG
(PARI) is(k) = Set(select(x -> x > 1, factor(k)[, 2])) == [2, 3];
CROSSREFS
Equals A046100 \ (A004709 UNION A336591).
Disjoint union of A375073 and A375075.
Sequence in context: A052486 A378859 A114128 * A375143 A375073 A143610
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Jul 29 2024
STATUS
approved