login
A375076
Numbers whose prime factorization exponents include at least one 1, at least one 3 and no other exponents.
2
24, 40, 54, 56, 88, 104, 120, 135, 136, 152, 168, 184, 189, 232, 248, 250, 264, 270, 280, 296, 297, 312, 328, 344, 351, 375, 376, 378, 408, 424, 440, 456, 459, 472, 488, 513, 520, 536, 552, 568, 584, 594, 616, 621, 632, 664, 680, 686, 696, 702, 712, 728, 744, 750
OFFSET
1,1
COMMENTS
First differs from its subsequence A360793 at n = 79: a(79) = 1080 = 2^3 * 3^3 * 5 is not a term of A360793.
Numbers k such that the set of distinct prime factorization exponents of k (row k of A136568) is {1, 3}.
The asymptotic density of this sequence is ((zeta(6)/zeta(3)) * Product_{p prime} (1 + 2/p^3 - 1/p^4 + 1/p^5) - 1)/zeta(2) = 0.076359822332835689478... .
MATHEMATICA
Select[Range[750], Union[FactorInteger[#][[;; , 2]]] == {1, 3} &]
PROG
(PARI) is(k) = Set(factor(k)[, 2]) == [1, 3];
CROSSREFS
Equals A336591 \ (A005117 UNION A062838).
Subsequences: A065036, A360793.
Sequence in context: A334801 A362594 A360793 * A297401 A065127 A065036
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Jul 29 2024
STATUS
approved