login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360793
Numbers of the form m*p^3, where m > 1 is squarefree and prime p does not divide m.
3
24, 40, 54, 56, 88, 104, 120, 135, 136, 152, 168, 184, 189, 232, 248, 250, 264, 270, 280, 296, 297, 312, 328, 344, 351, 375, 376, 378, 408, 424, 440, 456, 459, 472, 488, 513, 520, 536, 552, 568, 584, 594, 616, 621, 632, 664, 680, 686, 696, 702, 712, 728, 744, 750
OFFSET
1,1
COMMENTS
Can be regarded as the cube version of A072357. Subsequence of A036537 (the number of divisors of any term is a power of 2). Also a subsequence of A048109.
Subsequence of A126706. - Michael De Vlieger, Feb 22 2023
The asymptotic density of this sequence is Sum_{p prime} d(p) = 0.074177741367259601921..., where d(p) = 1/(p^2*(p+1)*zeta(2)) is the density of the subset of terms that are divisible by p^3. - Amiram Eldar, Aug 01 2024
LINKS
FORMULA
For a(n) = m*p^3, A000005(a(n)) = 2^k, where k = 2 + A001221(m).
Equals A048109 \ A030078.
EXAMPLE
1608 = 2^3*201 is in this sequence (p = 2; m = 201 is odd and squarefree).
A001221(201) = 2, therefore 1608 has 2^(2+2) = 16 divisors.
MAPLE
filter:= proc(n) local F;
F:= sort(ifactors(n)[2][.., 2]);
nops(F) >= 2 and F[-1] = 3 and F[-2] = 1
end proc:
select(filter, [$1..1000]); # Robert Israel, Mar 01 2023
MATHEMATICA
Select[Range[1000], (e = Sort[FactorInteger[#][[;; , 2]]])[[-1]] == 3 && Length[e] > 1 && e[[-2]] == 1 &] (* Amiram Eldar, Feb 21 2023 *)
PROG
(PARI) isok(k) = if (k>1, my(f=factor(k), v=f[, 2], m); if (vecmax(v)==3, w=select(x->(x==3), v, 1); if (#w == 1, m = k/f[w[1], 1]^3; (m>1) && issquarefree(m)))); \\ Michel Marcus, Feb 21 2023
(Python)
from itertools import count, islice
from sympy import factorint
def A360793_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:len(f:=sorted(factorint(n).values(), reverse=True))>1 and f[0]==3 and f[1] == 1, count(max(startvalue, 1)))
A360793_list = list(islice(A360793_gen(), 20)) # Chai Wah Wu, Feb 28 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved