login
A360795
Expansion of Sum_{k>0} x^k / (1 - (k * x)^k)^(k+1).
1
1, 3, 4, 17, 6, 211, 8, 1929, 7300, 22601, 12, 1724809, 14, 6703047, 223678576, 738787345, 18, 65630598229, 20, 2119646503661, 24448573943662, 3423809253371, 24, 21453113652593665, 12016296386718776, 4240253019018225, 8255251542208471048, 67251293544533119589, 30
OFFSET
1,2
FORMULA
a(n) = Sum_{d|n} d^(n-d) * binomial(d+n/d-1,d).
If p is prime, a(p) = 1 + p.
MATHEMATICA
a[n_] := DivisorSum[n, #^(n-#) * Binomial[# + n/# - 1, #] &]; Array[a, 30] (* Amiram Eldar, Aug 02 2023 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-(k*x)^k)^(k+1)))
(PARI) a(n) = sumdiv(n, d, d^(n-d)*binomial(d+n/d-1, d));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 21 2023
STATUS
approved