login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360798
Expansion of Sum_{k>0} x^k / (1 - (2 * x)^k)^(k+1).
1
1, 5, 13, 45, 81, 321, 449, 1745, 2945, 9153, 11265, 60609, 53249, 230401, 410625, 1259777, 1114113, 7263233, 4980737, 31337473, 44630017, 115367937, 96468993, 937283585, 551550977, 2399256577, 4594597889, 14579646465, 7784628225, 89894944769, 33285996545
OFFSET
1,2
FORMULA
a(n) = Sum_{d|n} 2^(n-d) * binomial(d+n/d-1,d).
If p is prime, a(p) = 1 + p * 2^(p-1).
MATHEMATICA
a[n_] := DivisorSum[n, 2^(n-#) * Binomial[# + n/# - 1, #] &]; Array[a, 30] (* Amiram Eldar, Aug 02 2023 *)
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-(2*x)^k)^(k+1)))
(PARI) a(n) = sumdiv(n, d, 2^(n-d)*binomial(d+n/d-1, d));
CROSSREFS
Cf. A360797.
Sequence in context: A183184 A115785 A218926 * A113835 A006349 A322203
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 21 2023
STATUS
approved