|
|
A360800
|
|
Numbers Sum_{i=1..2r+1} 2^k(i) such that k(1) is even and, for r > 0 and i < 2r+1, the difference k(i+1)-k(i) is > 0 and odd.
|
|
1
|
|
|
1, 4, 7, 16, 19, 25, 28, 31, 64, 67, 73, 76, 79, 97, 100, 103, 112, 115, 121, 124, 127, 256, 259, 265, 268, 271, 289, 292, 295, 304, 307, 313, 316, 319, 385, 388, 391, 400, 403, 409, 412, 415, 448, 451, 457, 460, 463, 481, 484, 487, 496, 499, 505, 508, 511, 1024
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
This is a subsequence of A360799. Another description of the terms: in the base-2 representation, the number of ones is odd and all zeros are grouped in blocks of even length.
That is why the terms less than 2^(2j+1) describe start profiles for tiling a (2j+1) X m wall with 1 X 2 dominos, see examples and A360799.
|
|
LINKS
|
|
|
EXAMPLE
|
A 5 X m wall is tiled bottom-up with dominos, start profiles:
_ _ _ _ _ _ _ _ _ _ _ _ _
___ ___| | ___| |___ ___| | | | | |___| | | | | | | | |
|___|___|_| |___|_|___| |___|_|_|_| |_|___|_|_| |_|_|_|_|_|
0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1
1 = a(1) 4 = a(2) 7 = a(3) 19 = a(5) 31 = a(7)
also the mirror images of 1 (16), 19 (25) and 7 (28).
|
|
PROG
|
(Maxima)
block(kmax: 100, a:[],
oddsum(y):= block(su1:0, su2:0, pold:0, ok: true,
while y>0 and ok do(p:mod(y, 2), y:(y-p)/2,
if p=1 then(if pold=0 and su2=1 then ok:false, su1:1-su1, su2:0)
elseif p=0 then su2:1-su2, pold:p), return(is(ok and su1=1))),
for k from 1 thru kmax do if oddsum(k) then a:append(a, [k]), a);
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|