login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187616
Triangle T(m,n) read by rows: number of domino tilings of the m X n grid (0 <= m <= n).
9
1, 1, 0, 1, 1, 2, 1, 0, 3, 0, 1, 1, 5, 11, 36, 1, 0, 8, 0, 95, 0, 1, 1, 13, 41, 281, 1183, 6728, 1, 0, 21, 0, 781, 0, 31529, 0, 1, 1, 34, 153, 2245, 14824, 167089, 1292697, 12988816, 1, 0, 55, 0, 6336, 0, 817991, 0, 108435745, 0, 1, 1, 89, 571, 18061, 185921, 4213133, 53175517, 1031151241, 14479521761, 258584046368
OFFSET
0,6
COMMENTS
A099390 is the main entry for this problem.
Triangle read by rows: the square array in A187596 with entries above main diagonal deleted.
EXAMPLE
Triangle begins:
1
1 0
1 1 2
1 0 3 0
1 1 5 11 36
1 0 8 0 95 0
1 1 13 41 281 1183 6728
1 0 21 0 781 0 31529 0
1 1 34 153 2245 14824 167089 1292697 12988816
...
MAPLE
with(LinearAlgebra):
T:= proc(m, n) option remember; local i, j, t, M;
if m<=1 or n<=1 then 1 -irem(n*m, 2)
elif irem(n*m, 2)=1 then 0
else M:= Matrix(n*m, shape =skewsymmetric);
for i to n do
for j to m do
t:= (i-1)*m+j;
if j<m then M[t, t+1]:= 1 fi;
if i<n then M[t, t+m]:= 1-2*irem(j, 2) fi
od
od;
sqrt(Determinant(M))
fi
end:
seq(seq(T(m, n), n=0..m), m=0..10); # Alois P. Heinz, Apr 11 2011
MATHEMATICA
T[m_, n_] := T[m, n] = Module[{i, j, t, M}, Which[m <= 1 || n <= 1, 1 - Mod[n*m, 2], Mod[n*m, 2] == 1, 0, True, M[i_, j_] /; j < i := -M[j, i]; M[_, _] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i-1)*m+j; If[j < m, M[t, t+1] = 1]; If[i < n, M[t, t+m] = 1 - 2*Mod[j, 2]]]]; Sqrt[Det[Table[M[i, j], {i, 1, n*m}, {j, 1, n*m}]]]]]; Table[Table[T[m, n], {n, 0, m}], {m, 0, 10}] // Flatten (* Jean-François Alcover, Jan 07 2014, translated from Maple *)
CROSSREFS
Cf. A099390, A187596. See A099390 for sequences appearing in the rows and columns. See also A187617, A187618.
Sequence in context: A371954 A127373 A200123 * A217262 A378148 A260616
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Mar 11 2011
STATUS
approved