login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360802
Expansion of Sum_{k>0} (x / (1 - (2 * x)^k))^k.
0
1, 3, 5, 17, 17, 105, 65, 449, 641, 1953, 1025, 16257, 4097, 37761, 93185, 247809, 65537, 1499649, 262145, 6596609, 8847361, 13654017, 4194305, 210026497, 90177537, 251764737, 833880065, 2659418113, 268435457, 18345328641, 1073741825, 53553922049, 75438751745
OFFSET
1,2
FORMULA
a(n) = Sum_{d|n} 2^(n-d) * binomial(d+n/d-2,d-1).
If p is prime, a(p) = 1 + 2^(p-1).
MATHEMATICA
a[n_] := DivisorSum[n, 2^(n-#) * Binomial[# + n/# - 2, # - 1] &]; Array[a, 30] (* Amiram Eldar, Aug 02 2023 *)
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (x/(1-(2*x)^k))^k))
(PARI) a(n) = sumdiv(n, d, 2^(n-d)*binomial(d+n/d-2, d-1));
CROSSREFS
Sequence in context: A359395 A292008 A139427 * A365475 A191051 A040129
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 21 2023
STATUS
approved