login
A360802
Expansion of Sum_{k>0} (x / (1 - (2 * x)^k))^k.
0
1, 3, 5, 17, 17, 105, 65, 449, 641, 1953, 1025, 16257, 4097, 37761, 93185, 247809, 65537, 1499649, 262145, 6596609, 8847361, 13654017, 4194305, 210026497, 90177537, 251764737, 833880065, 2659418113, 268435457, 18345328641, 1073741825, 53553922049, 75438751745
OFFSET
1,2
FORMULA
a(n) = Sum_{d|n} 2^(n-d) * binomial(d+n/d-2,d-1).
If p is prime, a(p) = 1 + 2^(p-1).
MATHEMATICA
a[n_] := DivisorSum[n, 2^(n-#) * Binomial[# + n/# - 2, # - 1] &]; Array[a, 30] (* Amiram Eldar, Aug 02 2023 *)
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (x/(1-(2*x)^k))^k))
(PARI) a(n) = sumdiv(n, d, 2^(n-d)*binomial(d+n/d-2, d-1));
CROSSREFS
Sequence in context: A359395 A292008 A139427 * A365475 A191051 A040129
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 21 2023
STATUS
approved