login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375078
a(1)=1; thereafter a(n) is the number of digits in (n mod 10) already present in the sequence.
1
1, 0, 0, 0, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0, 0, 1, 0, 15, 4, 0, 0, 1, 1, 0, 0, 1, 0, 20, 7, 1, 0, 1, 1, 0, 1, 1, 0, 24, 12, 3, 1, 2, 1, 0, 1, 1, 0, 26, 17, 5, 1, 2, 2, 1, 2, 1, 0, 27, 21, 10, 1, 2, 2, 1, 3, 1, 0, 29, 26, 14, 2, 3, 2, 2, 3, 1, 1, 29, 29, 19
OFFSET
1,10
LINKS
Paolo P. Lava, First 1000 terms
Carlos Rivera, Puzzle 1182. Another sequence by Paolo Lava, The Prime Puzzles and Problems Connection.
MAPLE
P:=proc(q) local a, b, c, n; a:=[1]; b:=[1];
for n from 2 to q do c:=numboccur(n mod 10, b); a:=[op(a), c];
if c=0 then b:=[op(b), 0]; else b:=[op(b), op(convert(c, base, 10))]; fi; od;
print(op(a)); end: P(10^3);
PROG
(Python)
from itertools import count, islice
def agen(): # generator of terms
s = "1"
yield 1
for n in count(2):
an = s.count(str(n%10))
s += str(an)
yield an
print(list(islice(agen(), 82))) # Michael S. Branicky, Aug 02 2024
(Python)
from collections import Counter
def A375078_gen(): # generator of terms
c, n = Counter({1:1}), 1
yield 1
while True:
n = (n+1)%10
yield c[n]
c += Counter(map(int, str(c[n])))
A375078_list = list(islice(A375078_gen(), 30)) # Chai Wah Wu, Aug 03 2024
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Paolo P. Lava, Jul 29 2024
STATUS
approved