login
A378859
Achilles numbers that are abundant.
2
72, 108, 200, 288, 392, 432, 500, 648, 800, 864, 968, 972, 1152, 1352, 1372, 1568, 1800, 1944, 2000, 2592, 2700, 3200, 3456, 3528, 3872, 3888, 4000, 4500, 4608, 5000, 5292, 5400, 5408, 5488, 6272, 6912, 7200, 8712, 8748, 9000, 9248, 9800, 10368, 10584, 10800, 10976, 11552, 12168, 12348, 12500, 12800, 13068, 13500, 14112, 15488
OFFSET
1,1
COMMENTS
33075 is the smallest odd term.
The set of distinct prime factors of a term can be any set P of primes such that Product_{p in P} p/(p-1) > 2. - Robert Israel, Jan 29 2025
LINKS
EXAMPLE
72=2^3*3^2 is a term because it is an Achilles number (powerful but imperfect, see A052486) and it is smaller than the sum of its proper divisors (1+2+3+4+6+8+9+12+18+24+36=123).
108=2^2*3^3 is a term because it is an Achilles number (powerful but imperfect, see A052486) and it is smaller than the sum of its proper divisors (1+2+3+4+6+9+12+18+27+36+54=172).
MAPLE
filter:= proc(n) local F, E, t; F:= ifactors(n)[2]; E:= F[.., 2]; min(E)>1 and igcd(op(E))=1 and mul((t[1]^(1+t[2])-1)/(t[1]-1), t = F) > 2*n end proc:
select(filter, [$1..10^5]); # Robert Israel, Jan 28 2025
MATHEMATICA
q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; AllTrue[e, # > 1 &] && GCD @@ e == 1 && Times @@ ((p - 1/p^e)/(p - 1)) > 2]; Select[Range[16000], q] (* Amiram Eldar, Dec 09 2024 *)
CROSSREFS
Intersection of A005101 and A052486.
Sequence in context: A272191 A072412 A052486 * A114128 A375074 A375143
KEYWORD
nonn
AUTHOR
Massimo Kofler, Dec 09 2024
STATUS
approved