OFFSET
1,1
COMMENTS
33075 is the smallest odd term.
The set of distinct prime factors of a term can be any set P of primes such that Product_{p in P} p/(p-1) > 2. - Robert Israel, Jan 29 2025
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
72=2^3*3^2 is a term because it is an Achilles number (powerful but imperfect, see A052486) and it is smaller than the sum of its proper divisors (1+2+3+4+6+8+9+12+18+24+36=123).
108=2^2*3^3 is a term because it is an Achilles number (powerful but imperfect, see A052486) and it is smaller than the sum of its proper divisors (1+2+3+4+6+9+12+18+27+36+54=172).
MAPLE
filter:= proc(n) local F, E, t; F:= ifactors(n)[2]; E:= F[.., 2]; min(E)>1 and igcd(op(E))=1 and mul((t[1]^(1+t[2])-1)/(t[1]-1), t = F) > 2*n end proc:
select(filter, [$1..10^5]); # Robert Israel, Jan 28 2025
MATHEMATICA
q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; AllTrue[e, # > 1 &] && GCD @@ e == 1 && Times @@ ((p - 1/p^e)/(p - 1)) > 2]; Select[Range[16000], q] (* Amiram Eldar, Dec 09 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Massimo Kofler, Dec 09 2024
STATUS
approved